News & Press releases

Nombre d'entrades: 96

10
Gener 2018

El Dark Energy Survey hace públicos los datos de sus tres primeros años


El Dark Energy Survey hace públicos los datos de sus tres primeros años
También anuncia el descubrimiento de once corrientes estelares, la evidencia de que la Vía Láctea devoró galaxias enanas. Investigadores del Institut de Ciències de l'Espai (IEEC-CSIC), el Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas (CIEMAT), el Institut de Física d'Altes Energies (IFAE) y el Instituto de Física Teórica (UAM-CSIC) participan en la obtención de estos resultados.

Barcelona/Madrid, 10 de enero de 2018

Durante una sesión especial en la reunión de la Sociedad Americana de Astronomía que se celebra actualmente en Washington D. C., los científicos del Dark Energy Survey (DES) han anunciado la publicación de los datos de sus tres primeros años de operación. Esta primera distribución pública de datos del cartografiado contiene información acerca de unos 400 millones de objetos astronómicos, que incluyen tanto galaxias lejanas, a distancias de miles de millones de años luz, como estrellas en nuestra propia galaxia.  

Los científicos de DES están utilizando estos datos para estudiar la energía oscura, la misteriosa fuerza responsable de que la expansión del universo se esté acelerando, y han presentado algunos de sus resultados en la sesión especial de la reunión de Washington. Como parte de dicha sesión, también han anunciado el descubrimiento de once nuevas corrientes estelares, remanentes de galaxias más pequeñas, desmembradas y devoradas por la Vía Láctea.

Al hacer públicos los datos de los tres primeros años de operación, DES cumple un compromiso que los científicos del proyecto habían adquirido para compartir sus hallazgos con la comunidad astronómica y con el público. Los datos cubren el área que explora DES al completo (alrededor de 5.000 grados cuadrados, o lo que es lo mismo, un octavo del cielo) e incluyen más de 100.000 exposiciones tomadas con la Dark Energy Camera (DECam). Las imágenes corresponden a cientos de terabytes de datos y se hacen públicas junto a catálogos de cientos de millones de galaxias y estrellas.

“Este inmenso repositorio de información sobre nuestro universo es el resultado de un esfuerzo de muchos años por parte del consorcio DES y se puede ver en la calidad de los datos puestos a disposición del público por primera vez. Estamos ansiosos por ver qué hace la comunidad con estas imágenes y catálogos y sorprendernos con los nuevos descubrimientos que sin duda nos aguardan,” afirma Ignacio Sevilla Noarbe, investigador en el CIEMAT y uno de los científicos responsables de la puesta a punto de los datos que ahora se hacen públicos.

Los datos de DES se pueden acceder públicamente en este enlace: https://des.ncsa.illinois.edu/releases/dr1

La cámara DECam, la herramienta principal del Dark Energy Survey, es uno de los dispositivos de toma de imágenes digitales más potentes que existen. Se ensambló y probó en Fermilab, el laboratorio que lidera DES, y está montada en el telescopio de 4m Víctor M. Blanco, en el Observatorio de Cerro Tololo, en Chile. El grupo DES-Spain, formado por CIEMAT, IEEC/CSIC, IFAE y UAM/IFT, contribuyó de manera destacada a la construcción de DECam. En particular diseñó, construyó y validó  la electrónica, y ha puesto en marcha el sistema de guiado, entre otras contribuciones. Es uno de los socios fundadores de la colaboración DES, y cuenta con financiación del MINECO, IEEC, CSIC y Generalitat de Cataluña.

Las imágenes de DES se procesan en el National Center for Supercomputing Applications (NCSA) en la Universidad de Illinois en Urbana-Champaign (EE. UU.).

“Nos emociona que estos datos de alta calidad se pongan a disposición de investigadores de todo el planeta.” comenta el chileno Matías Carrasco-Kind, científico principal en esta publicación del equipo de gestión de datos de NCSA. “Aunque DES fue diseñado con el objetivo de comprender la energía y materia oscuras, la gigantesca cantidad de datos de estas imágenes proporcionarán nuevas aplicaciones científicas, retos y oportunidades de descubrimiento para astrónomos y científicos de datos. En colaboración con el NOAO y el equipo de LineA en Brasil, vamos a proveer herramientas y recursos para acceder y analizar este conjunto de datos de gran riqueza y robustez.”

Un descubrimiento que ha sido posible gracias a este conjunto de datos es la detección de once nuevas corrientes estelares alrededor de nuestra galaxia, la Vía Láctea, algunas de las cuales pueden verse en la imagen adjunta. Nuestro hogar cósmico está rodeado de un halo masivo de materia oscura, que ejerce una poderosa fuerza de atracción gravitacional sobre galaxias pequeñas y cercanas. La Vía Láctea crece atrayendo, desmembrando y absorbiendo estos sistemas galácticos más pequeños. Según se les arrancan sus estrellas, éstas van formando corrientes a lo largo del cielo que se pueden detectar con DECam. Pero incluso contando con un instrumento tan poderoso, estas corrientes estelares son extremadamente difíciles de encontrar, ya que están compuestas por un número relativamente pequeño de estrellas extendidas a lo largo de una gran área del cielo.

Antes de los nuevos descubrimientos de DES, ya se habían descubierto alrededor de dos docenas de corrientes estelares. Muchas de ellas las encontró el Sloan Digital Sky Survey, un precursor de DES. El estudio detallado de estas corrientes estelares se utilizará para medir la cantidad, la distribución y la agrupación de la materia oscura en la Vía Láctea, por lo que ayudará a entender sus propiedades fundamentales.

Puesto que no hay ninguna convención aceptada para nombrar las corrientes estelares, DES ha acudido a escuelas en Chile y Australia, pidiendo nombres a los alumnos. Tanto los alumnos como sus profesores han trabajado juntos para bautizar las corrientes utilizando palabras que tuviesen relación con el agua en los lenguajes de los nativos del norte de Chile y los aborígenes australianos. Más información acerca de estos nombres en la revista Symmetry (https://www.symmetrymagazine.org/article/rivers-in-the-sky).

Los artículos científicos que se han publicado utilizando los datos de los primeros años de DES pueden verse en https://www.darkenergysurvey.org/dr1-data-release-papers.

DES planea en el futuro otro lanzamiento público con más datos, una vez se complete el cartografiado, que incluirá aproximadamente el doble de imágenes de las que incluye el actual.El Dark Energy Survey es una colaboración de más de 400 científicos de 26 instituciones en siete países. Los fondos para los proyectos de DES han sido proporcionados por el U.S. Department of Energy Office of Science, U.S. National Science Foundation, el Ministerio de Economía, Industria y Competitividad de España, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, ETH Zurich for Switzerland, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Ministério da Ciência e Tecnologia, Deutsche Forschungsgemeinschaft, y las instituciones colaboradoras, cuya lista se encuentra en www.darkenergysurvey.org/collaboration.


Personas de contacto:                                 

ICE (IEEC-CSIC)

Dr. Enrique Gaztañaga, Profesor de Investigación del CSIC, gazta@ice.csic.es

IFAE   
Dr. Ramon Miquel, Director del IFAE y Profesor de Investigación ICREA, ramon.miquel@ifae.es

CIEMAT
Dr. Eusebio Sánchez, Investigador Científico del CIEMAT, eusebio.sanchez@ciemat.es

IFT-UAM/CSIC
Dr. Juan García-Bellido, Profesor de la UAM y miembro del IFT, juan.garciabellido@uam.es
28
Desembre 2017

Nanda Rea wins the National Catalonian Award for Young Researchers 2017


National Catalonian Award for Young Researchers 2017 awarded to Nanda Rea from ICE (CSIC-IEEC)

The Govern de la Generalitat and La Fundació Catalana per a la Recerca i la Innovació (FCRi) awarded Nanda Rea from ICE (CSIC-IEEC) with the Els Premis Nacionals de Recerca Talent Jove 2017 for her professional trajectory and excellence in her research activity. The awarded will be handled in early 2018 by the President of the Govern de la Generalitat. This was featured on Decembre 27th, 2017 in the main Catalan news papers as La Vanguardia and El Periodico.
18
Desembre 2017

El instrumento CARMENES descubre su primer exoplaneta


Científicos del CSIC han coliderado el hallazgo de HD 147379 b, con una masa algo superior a Neptuno, que orbita una estrella muy próxima
Científicos del CSIC han coliderado el hallazgo de HD 147379 b, con una masa ligeramente superior a Neptuno, que orbita una estrella muy próxima

A pesar de situarse en la denominada zona habitable, carece de superficie y no se espera que exista agua en forma líquida

El proyecto CARMENES, impulsado por un consorcio de 11 instituciones alemanas y españolas y coliderado por el Consejo Superior de Investigaciones Científicas (CSIC), ha descubierto su primer planeta fuera del Sistema Solar desde el telescopio de 3,5 metros del Observatorio de Calar Alto en Almería, dependiente del CSIC y la Sociedad Max Planck. Los detalles del hallazgo aparecen publicados en la revista Astronomy & Astrophysics Letters.

El instrumento ha observado una estrella enana muy próxima y la mitad de masiva que el Sol, en torno a la cual orbita un planeta bautizado como HD 147379 b, ligeramente más masivo que Neptuno. Este exoplaneta completa su órbita cada 86 días a una distancia que es solo una tercera parte de la que separa la Tierra del Sol. El planeta se encuentra dentro de la denominada zona de habitabilidad, que es la región en torno a una estrella donde las condiciones permiten la existencia de agua líquida. 

“Es improbable que la vida pueda haberse desarrollado en este planeta porque probablemente carece de superficie sólida”, explica Ignasi Ribas, investigador del CSIC en el Instituto de Ciencias del Espacio. Y agrega: “El exoplaneta, similar a Neptuno, que orbita en la zona habitable de una estrella muy próxima, no es de los más espectaculares, pero es el primero. Tenemos por delante un futuro de observaciones que, sin duda, darán sus frutos”.

Un instrumento único
El descubrimiento confirma la eficiencia de CARMENES como instrumento diseñado para buscar planetas de tipo terrestre en la zona de habitabilidad. "Los falsos positivos son habituales en la búsqueda de planetas extrasolares, y aquí emerge una de las fortalezas de CARMENES: al observar en el visible y en el infrarrojo podremos confirmar los hallazgos sin necesidad de otras comprobaciones. Ningún otro instrumento puede hacer esto", señala Pedro J. Amado, investigador del CSIC en el Instituto de Astrofísica de Andalucía y co-investigador principal de CARMENES.

El instrumento ha sido desarrollado por un consorcio de 11 instituciones españolas y alemanas. En España participan en el proyecto, que se prolongará al menos hasta el año 2020, el Instituto de Astrofísica de Andalucía (CSIC), que colidera el proyecto y ha desarrollado el canal infrarrojo, el Instituto de Ciencias del Espacio (CSIC-IEEC), la Universidad Complutense de Madrid, el Instituto de Astrofísica de Canarias y el Centro de Astrobiología (CSIC-INTA). Ha obtenido financiación de la Sociedad Max-Planck, el CSIC, el Ministerio de Economía y Competitividad y la Junta de Andalucía, entre otros organismos. 

A. Reiners et al. The CARMENES search for exoplanets around M dwarfs. HD147379 b: A nearby Neptune in an early-M dwarf’s temperate zone. Astronomy & Astrophysics Letters. DOI: 10.1051/0004-6361/201732165

 
01
Desembre 2017

Fifty years of pulsar astrophysics


Fifty years of pulsar astrophysics: an invited report, a new image and a video, produced for Nature Astronomy
In November 1967, after about two years mounting thousands of antennas, and connecting about a hundred miles of wires and cables over about four acres, the Cambridge PhD student Jocelyn Bell, noticed a strange signal in the data of her recently mounted telescope at the Mullard Radio Astronomy Observatory. Scanning a large part of the sky taking advantage of the Earth rotation, this new radio telescope soon produced a huge amount of data that Jocelyn Bell was promptly analyzing by hand, to study radio scintillation from many different astronomical sources.  However, very soon she came across a “scruff” signal, that she recognized as repeating every 1.33 seconds. These fast repetitions could not come from anything she was used to observe.
 
After a hectic time during Christmas holidays investigating over the nature of this “scruff” signal, carefully excluding any kind of man-made interference in the data, or the more exotic possibility of a “Little Green Man” trying to communicate with humans, Jocelyn Bell (now Professor) and her PhD supervisor Prof. Antony Hewish, recognized in this fast and periodic signal the possibility of it being produced by a compact star, dense and rapidly rotating star.
 
In fact, in the early  ‘30s, soon after the discovery of neutrons, many scientists predicted the existence of very compact and dense stars, made in large fraction by neutrons (spanning about 20km and as dense as atomic nuclei). These neutron stars were indeed predicted to be fast rotating, highly magnetic, and produced as left-overs of the death-end explosion of massive stars. In February 1968, the first pulsar discovery was published in the Nature magazine by Mrs. Bell, Prof. Hewish and collaborators.
 
Fifty years after this revolutionary discovery, Nature Astronomy publish a complete Issue celebrating the 50 years of pulsars, comprising several invited reports on different topics concerning pulsars. Nanda Rea from the Institute of the Space Sciences (IEEC-CSIC) has written a report for this issue, and Santiago Serrano Elorduy (IEEC-CSIC) has produced a new image and a video for Nature Astronomy showing the about 2500 pulsars discovered to date, as a function of time.
15
Novembre 2017

Prof.S.D. Odintsov is 2017 Thomson-Reuters highly cited researcher (fourth year in a row)


https://clarivate.com/hcr/2017-researchers-list/#
Prof. S.D. Odintsov is 2017 Thomson-Reuters highly cited researcher (fourth year in a row) https://clarivate.com/hcr/2017-researchers-list/#
18
Octubre 2017

Una nova finestra al coneixement de l’univers


A new window to the knowledge of the Universe
El 17 d’agost, la col·laboració LIGO/VIRGO van captar de forma simultània i mitjançant tres detectors separats per milers de quilòmetres sobre la Terra un intens senyal d’ones gravitacionals produïdes per la col·lisió de dos estels de neutrons. Mai no s’havia detectat un senyal d’aquestes característiques. Pràcticament alhora, el Fermi Gamma-ray Space Telescope de la NASA va observar una explosió de raigs gamma a la mateixa regió del cel. Hores més tard, un altre equip científic alertat per les deteccions prèvies i emprant la càmera del projecte DES (Dark Energy Survey) va obtenir les primeres imatges òptiques d’una gran explosió còsmica (kilonova) l’origen de la qual era la mateixa font, la galàxia NGC 4993, situada a 130 milions d’anys llum de la Terra.
 
Investigadors de l’Institut de Ciències de l’Espai (IEEC-CSIC) participen en les col·laboracions DES i Fermi que han fet possible aquestes descobertes. Desenes d’observatoris i milers d’astrofísics s’han coordinat per recollir dades d’aquest esdeveniment. La gran varietat i qualitat de dades que s’han obtingut de l’explosió còsmica i les perspectives futures han generat un gran optimisme al voltant d’aquesta nou finestral observacional.
 
Les dades confirmen els models que descriuen l’origen dels elements pesants, com l’or, el platí o l’urani, que són presents, amb una certa abundància, a la Terra y a altres sistemes, permeten mesurar el ritme d’expansió de l’univers o entendre nous detalls de l’evolució estel·lar i galàctica.
 
Per primera vegada, diferents grups de l’Institut de Ciències de l'Espai (IEEC-CSIC) que treballen en àrees tan diverses com la detecció d’ones gravitatòries, física fonamental, radioastronomia, astronomia mil·limètrica, cosmologia, física estel·lar, astrofísica d’altes energies i de raigs X, formació de galàxies o recerca de planetes tenen un objectiu comú per investigar.
 
16
Octubre 2017

Scientists spot explosive counterpart of LIGO/Virgo’s latest gravitational waves


Scientists spot explosive counterpart of LIGO/Virgo’s latest gravitational waves
Scientists using the Dark Energy Camera have captured images of the aftermath of a neutron star collision, the source of LIGO/Virgo’s most recent gravitational wave detection
 
A team of scientists using the Dark Energy Camera (DECam), the primary observing tool of the Dark Energy Survey, was among the first to observe the fiery aftermath of a recently detected burst of gravitational waves, recording images of the first confirmed explosion from two colliding neutron stars ever seen by astronomers.
 
Scientists on the Dark Energy Survey joined forces with a team of astronomers based at the Harvard-Smithsonian Center for Astrophysics (CfA) for this effort, working with observatories around the world to bolster the original data from DECam. Images taken with DECam captured the flaring-up and fading over time of a kilonova – an explosion similar to a supernova, but on a smaller scale – that occurs when collapsed stars (called neutron stars) crash into each other, creating heavy radioactive elements.
 
This particular violent merger, which occurred 130 million years ago in a galaxy near our own (NGC 4993), is the source of the gravitational waves detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo collaborations on Aug. 17. This is the fifth source of gravitational waves to be detected---the first one was discovered in September 2015, for which three founding members of the LIGO collaboration were awarded the Nobel prize in physics two weeks ago.
 
This latest event is the first detection of gravitational waves caused by two neutron stars colliding, and thus the first one to have a visible source. The previous gravitational wave detections were traced back to binary black holes, which cannot be seen through telescopes. This neutron star collision occurred relatively close to home, so within a few hours of receiving the notice from LIGO/Virgo, scientists were able to point telescopes in the direction of the event and get a clear picture of the light.
 
“This is beyond my wildest dreams,” said Marcelle Soares-Santos, formerly of the U.S. Department of Energy’s Fermi National Accelerator Laboratory and currently of Brandeis University, who led the effort from the Dark Energy Survey side. “With DECam we get a good signal, and we can show how it is evolving over time. The team following these signals is a well-oiled machine, and though we did not expect this to happen so soon, we were ready for it.”
 
The Dark Energy Camera is one of the most powerful digital imaging devices in existence. It was built and tested at Fermilab, the lead laboratory on the Dark Energy Survey, and is mounted on the National Science Foundation’s 4-meter Blanco telescope, part of the Cerro Tololo Inter-American Observatory in Chile, a division of the National Optical Astronomy Observatory. The DES images are processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
 
Texas A&M University astronomer Jennifer Marshall was observing for DES at the Blanco telescope during the event, while Fermilab astronomers Douglas Tucker and Sahar Allam were coordinating the observations from Fermilab's Remote Operations Center. “It was truly amazing,” Marshall said. “I felt so fortunate to be in the right place at the right time to help make perhaps one of the most significant observations of my career.” 
 
The kilonova was first identified in DECam images by Ohio University astronomer Ryan Chornock, who instantly alerted his colleagues by email. “I was flipping through the raw data and I came across this bright galaxy, and saw a new source that was not in the reference image (taken previously),” he said. “It was very exciting.”
 
Once the crystal clear images from DECam were taken, a team led by Professor Edo Berger, from CfA, went to work analyzing the phenomenon using several different resources. Within hours of receiving the location information, the team had booked time with several observatories, including NASA’s Hubble Space Telescope and Chandra X-ray Observatory.
 
LIGO/Virgo works with dozens of astronomy collaborations around the world, providing sky maps of the area where any detected gravitational waves originated. The team from DES and CfA had been preparing for an event like this for more than two years, forging connections with other astronomy collaborations and putting procedures in place to mobilize as soon as word came down that a new source had been detected. The result is a rich data set that covers “radio waves to X-rays to everything in between,” Berger said.
 
“This is the first event, the one everyone will remember,” Berger said. “I’m extremely proud of our entire group, who responded in an amazing way. I kept telling them to savor the moment. How many people can say they were there at the birth of a whole new field of astronomy?”
 
Adding to the excitement of this observation, this latest gravitational wave detection correlates to a burst of gamma rays spotted by NASA’s Fermi Gamma-ray Space Telescope. Combining these detections is like hearing thunder and seeing lightning for the very first time, and it opens up a world of new scientific discovery.
 
“Each of these – the gravitational waves from merging neutron stars, the gamma ray burst and the optical counterpart – could have been separate ground-breaking discoveries, and each could have taken many years,” said Daniel Holz of the University of Chicago, who works on both the DES and LIGO collaborations.  “In less than a day, we did it all. This has required many different communities working together to make it all happen. It’s so gratifying to have it be so successful.”
 
This event also provides a completely new and unique way to measure the present expansion rate of the universe, the Hubble constant, something theorized by Holz and others. Just as astrophysicists use supernovae as “standard candles” (objects of the same intrinsic brightness) to measure cosmic expansion, kilonovae can be used as “standard sirens” (objects of known gravitational wave strength).
 
LIGO/Virgo can use this to tell the distance to these events, while optical follow-up from DES and others determines the redshift or recession speed; their combination enables scientists to determine the present expansion rate. This new kind of measurement will assist the Dark Energy Survey in its mission to uncover more about dark energy, the mysterious force accelerating the expansion of the universe.
 
“The Dark Energy Survey team has been working with LIGO for more than two years, refining their process of following up gravitational wave signals,” said Fermilab Director Nigel Lockyer. “It is immensely gratifying to be on the front lines of a discovery this significant, one that required the combined skills of many supremely talented people in many fields.”
 
The Dark Energy Survey recently began the fifth and final year of its quest to map an area of the southern sky in unprecedented detail. Scientists on DES will use this data to learn more about the effect of dark energy over eight billion years of the universe’s history, in the process measuring 300 million galaxies, 100,000 galaxy clusters and 3,000 supernovae.
 
Six papers relating to the DECam discovery of the optical counterpart are planned for publication in The Astrophysical Journal. Preprints of all papers are available here: https://www.darkenergysurvey.org/des-gravitational-waves-papers.
 
“It is tremendously exciting to experience a rare event that transforms our understanding of the workings of the universe,” says France A. Córdova, director of the National Science Foundation (NSF), which funds LIGO and supports the observatory where DECam is housed. “This discovery realizes a long-standing goal many of us have had, that is, to simultaneously observe rare cosmic events using both traditional as well as gravitational-wave observatories. Only through NSF’s four-decade investment in gravitational-wave observatories, coupled with telescopes that observe from radio to gamma-ray wavelengths, are we able to expand our opportunities to detect new cosmic phenomena and piece together a fresh narrative of the physics of stars in their death throes.”
 
 
The Dark Energy Survey is a collaboration of more than 400 scientists from 26 institutions in seven countries. Funding for the DES Projects has been provided by the U.S. Department of Energy Office of Science, U.S. National Science Foundation, Ministry of Science and Education of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, ETH Zurich for Switzerland, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Ministério da Ciência e Tecnologia, Deutsche Forschungsgemeinschaft, and the collaborating institutions in the Dark Energy Survey, the list of which can be found at www.darkenergysurvey.org/collaboration. 
Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
Fermilab is America’s premier national laboratory for particle physics and accelerator research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC, a joint partnership between the University of Chicago and the Universities Research Association, Inc. Visit Fermilab’s website at www.fnal.gov and follow us on Twitter at @Fermilab.
 
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Contact people:                         
ICE (IEEC-CSIC)   
Dr. Enrique Gaztañaga, Profesor de Investigación del  CSIC, gazta@ice.csic.es
IFAE   
Dr. Ramon Miquel, Director del IFAE y Profesor de Investigación ICREA, ramon.miquel@ifae.es
CIEMAT
Dr. Eusebio Sánchez, Investigador Científico del  CIEMAT, eusebio.sanchez@ciemat.es
IFT-UAM/CSIC
Dr. Juan García-Bellido, Profesor de la UAM y miembro del IFT, juan.garciabellido@uam.es
 
03
Octubre 2017

A paper signed by A. Serenelli is considered a highlight paper for 2017 by Astronomy & Astrophysics


A paper signed by A. Serenelli is considered a highlight paper for 2017 by Astronomy & Astrophysics
The paper titled "The brightness of the red giant branch tip. Theoretical framework, a set of reference models, and predicted observables" signed by A. Serenelli and four other authors, published by Astronomy & Astrophysics (A&A 606, A33), it is considered a Highlighted paper for 2017 by the publication.
27
Setembre 2017

Josep Maria Trigo miembro de la Selección Española de Ciencia 2017


Josep Maria Trigo ha sido seleccionado como miembro de la Selección Española de Ciencia 2017 por la revista QUO
La revista de divulgación QUO, con la colaboración del CSIC y la secretaría de Estado de Innovación a seleccionado a nueve investigadores españoles como miembros de la Selección Española de Ciencia para 2017. Esta selección científica está formada por: Lluís Torner, Concha Monje, Ramón López de Mántaras, María Carmen Collado, Javier Tamayo, Antonio Figueras, Alejandro Ocampo y los astrofísicos Guillem Anglada-Escudé y Josep Maria Trigo, miembro este último del Instituto de Ciencias del Espacio. La entrega de los galardones se realizará a principios de octubre en la sede central del CSIC en Madrid.
27
Setembre 2017

Exploring the Universe at the Highest Energies – the Cherenkov Telescope Array Releases its Updated Science Case


Libro de Ciencia de CTA
The latest iteration of the Cherenkov Telescope Array’s (CTA’s) science case, Science with the Cherenkov Telescope Array, was made available today via the CTA website library and will be published in a special edition of International Journal of Modern Physics D in the coming weeks. The work includes more than 200 pages that introduce and elaborate on CTA’s major science themes and place CTA in the context of other major observatories.
 
“The release of this document represents a major milestone for CTA, and it details the breadth and the richness of the science that will be done with the observatory over the next decade,” says CTA Co-Spokesperson Prof. Rene Ong. “The document would not have been possible without the hard work of literally hundreds of CTA Consortium members over a period of many years.”
 
CTA will be the foremost global observatory for very high-energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA will explore the extreme Universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. With its ability to cover an enormous range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. And its wider field of view and improved sensitivity will enable CTA to survey hundreds of times faster than previous TeV telescopes.
 
CTA will seek to address a wide range of questions in astrophysics and fundamental physics that fall under three major study themes: understanding the origin and role of relativistic cosmic particles, probing extreme environments and exploring frontiers in physics (Chapter 1).
 
“The Key Science Projects described in the document – surveys and deep observations of key objects – will provide legacy data sets of lasting value and will provide important input for the planning of CTA's user programme,” said CTA Spokesperson Prof. Werner Hofmann.
 
Some of the most promising discoveries will come from a survey of our Milky Way galaxy, which should discover more Galactic sources for improved population studies and for advancing our understanding the origin of cosmic rays (Chapter 6); the Ramon y Cajal researcher from the Institute for Space Sciences (IEEC-CSIC) explains: "we will observe our Galaxy with a sensitivity 10 times better that with the current instruments, allowing us to finally understand long-standing questions such the origin of the cosmic rays, which have been eluding us for 100 years!";  the search for the elusive dark matter with models not accessible by other experiments (Chapter 4); and the detection of transient phenomena like gamma-ray bursts and gravitational wave events associated with catastrophic events in the Universe (Chapter 9).
 
“For me, the most exciting aspect of CTA is the potential for truly unexpected discoveries,” says CTA Project Scientist, Prof. Jim Hinton. “CTA pushes to shorter timescales, higher energies and more distant objects. Pushing back the frontiers in astronomy always leads to something truly new and exciting, and now we’re all just itching to get started.”
 
It has been a decade since science planning for CTA started, resulting in a series of publications in a special edition of Astroparticle Physics in 2013. The current work began that same year with an organized effort by the CTA Consortium to develop CTA’s Key Science Projects (KSPs) in 2013. After three years of development and refinement that including internal and external reviews, the KSPs were incorporated into a single document: Science with the Cherenkov Telescope Array.
 
Notes for Editors:
CTA (http://www.cta-observatory.org) is a global initiative to build the world’s largest and most sensitive high-energy gamma-ray observatory. More than 1,350 scientists and engineers from 32 countries are engaged in the scientific and technical development of CTA. The Observatory will be constructed by the CTAO gGmbH, which is governed by Shareholders and Associate Members from a growing number of countries.
 
CTA will serve as an open observatory to the world-wide physics and astrophysics communities. The CTA Observatory will detect high-energy radiation with unprecedented accuracy and approximately 10 times better sensitivity than current instruments, providing novel insights into the most extreme events in the Universe.
CTA is included in the 2008 roadmap of the European Strategy Forum on Research Infrastructures (ESFRI). This project is receiving funding from the European Union’s Horizon 2020 research and innovation programs under agreement No 676134. This project has received funding from the European Union’s Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) under Grant Agreement 262053.
Contact Information:
Prof. Rene Ong, CTA Co-Spokesperson
+1-3108253622; rene@astro.ucla.edu
 
Prof. Jim Hinton, CTA Project Scientist
+49-6221-1516201; jim.hinton@mpi-hd.mpg.de
 
Diego Torres,
dtorres@ice.csic.es
 
Prof. Werner Hofmann, CTA Spokesperson
+49-6221-516330; werner.hofmann@mpi-hd.mpg.de

Prof. Ulrich Straumann, CTAO gGmbH Managing Director
+49-6221-516471; strauman@physik.uzh.ch
 
Megan Grunewald, CTA Communications Officer
+49-6221-516471; mgrunewald@cta-observatory.org
 
Institute of Space Sciences (IEEC-CSIC)

Campus UAB, Carrer de Can Magrans, s/n
08193 Barcelona.
Phone: +34 93 737 9788
Email: ice@ice.csic.es
Website developed with RhinOS

Segueix-nos


An institute of the Consejo Superior de Investigaciones Científicas

An institute of the Consejo Superior de Investigaciones Científicas
Affiliated with the Institut d'Estudis Espacials de Catalunya

Affiliated with the Institut d'Estudis Espacials de Catalunya