News & Press releases

Number of entries: 100

15
April 2019

Primordial comet fragment discovered inside meteorite gives clues to the origin of the Solar System


Primordial comet fragment discovered inside meteorite gives clues to the origin of the Solar System
Section of the carbonaceous chondrite LaPaz 02342 and extension of the cometary dust speck. Credit: IEEC-CSIC/Carnegie Institution for Science.
ICE, CSIC / IEEC / Carnegie Institution for Science
Using the only international repository of NASA’s Antarctic meteorites based in Spain, at ICE, a study co-led by IEEC– CSIC has revealed a comet fragment inside the carbonaceous chondrite meteorite LaPaz 02342

An international team including researchers from the Institute of Space Studies of Catalonia (IEEC) at the Institute of Space Sciences (ICE, CSIC) has discovered a pristine comet fragment inside a meteorite. This finding demonstrates that the class of meteorites known as carbonaceous chondrites contains clues to the composition of more fragile objects that formed in regions distant from the Sun, more than 4,560 million years ago. The results are published in the journal Nature Astronomy.

After a three-year study of the carbonaceous chondrite LaPaz 02342, from NASA's Antarctic collection, researchers have come to the conclusion that the comet fragment, of about one hundred microns, is composed of an unusual mixture of organic materials, amorphous and crystalline silicates, sodium sulphates, sulphides, and presolar grains; the latter synthesised in stars that enriched the original materials of our Solar System. Among other instruments, a secondary ion mass spectrometer (nano-SIMS) of the Carnegie Institution for Science (USA) has been used for its analysis, which allows studying at a nanometric scale the composition of the meteorite at an isotopic and elemental level.

"This fragment, technically known as xenolith, has unusual characteristics that we think were produced from the incorporation of primitive materials embedded in ice", says IEEC– CSIC researcher Josep Maria Trigo-Rodríguez, who works at ICE and co-leads the study.

"Many objects in the Solar System have a very different composition than the meteorites available in terrestrial collections. Carbonaceous chondrites, such as LaPaz 02342, constitute a fossil legacy of the creation of the planetesimals in their interior and are capable of preserving unique samples of other objects much richer in organic and volatile matter, known as comets", explains Trigo-Rodríguez.

As the researcher points out: "The asteroid progenitor of this carbonaceous chondrite underwent aqueous alteration[1], but fortunately, it was neither extensive nor homogeneous. This led to the preservation of the unique properties of this cometary dust speck, among which the richness in tiny mineral grains formed in stars of the same environment in which the Sun was born.” The study concludes that this tiny fragment incorporated not only ice but also materials from the interstellar medium. The fragment was also irradiated by high-energy cosmic rays, a process in which tiny glasses known as GEMS (Glass with Embedded Metal and Sulfides) were created.

The most primitive meteorites
Carbonaceous chondrites come from transitional bodies, a category falling between asteroids and comets. Given their sizes typically smaller than a few hundred kilometres, such bodies never melted or suffered internal chemical differentiation as occurred to the planets. The materials that make up these objects are usually fragile and do not usually survive the transit of tens of millions of years that transport them from their parent bodies to the Earth orbit. In case they do, they fragment and volatilise when entering into the atmosphere at hypersonic velocities. Precisely because of this reason, ultracarbonaceous materials such as those discovered are extremely rare and have only been identified as micrometeorites.

The search for primordial materials among the most primitive meteorites can be carried out at ICE, given that it is the only international repository of NASA’s Antarctic meteorites in Spain. The samples studied by the IEEC–CSIC scientific team come from NASA's Johnson Space Center. Hence, researchers have access to unique specimens, being able to select those that have not undergone thermal metamorphism[2] or extreme aqueous alteration.

This discovery is part of the National Astronomy and Astrophysics Plan project (AYA- 2015-67175-P) for the study of primitive materials preserved in meteorites led by Josep M. Trigo-Rodríguez. Carles E. Moyano-Cambero and Safoura Tanbakouei, from IEEC at ICE (CSIC), have also participated. The international cooperation has been led by Larry Nittler from the Carnegie Institution for Science, in collaboration with his colleagues Conel Alexander and Jemma Davidson, as well as Rhonda Stroud and Bradley De Gregorio of the U.S. Naval Research Laboratory.

Notes
[1] The change in the composition of a rock, as a response to interactions with water- bearing ices, liquids, and vapors by chemical weathering.
[2] A type of metamorphism resulting in a chemical reconstitution controlled by a temperature increase.

Links
- IEEC
- ICE
- CSIC

More information
This research is presented in a paper entitled “A cometary building block in a primitive asteroidal meteorite", by Nittler L.R. et al., to appear in the journal Nature Astronomy on 15 April 2019.

The Institute of Space Studies of Catalonia (IEEC — Institut d’Estudis Espacials de Catalunya) promotes and coordinates space research and technology development in Catalonia for the benefit of society. IEEC fosters collaborations both locally and worldwide and is an efficient agent of knowledge, innovation and technology transfer. As a result of over 20 years of high-quality research, done in collaboration with major international organisations, IEEC ranks among the best international research centers, focusing on areas such as: astrophysics, cosmology, planetary science, and Earth Observation. IEEC’s engineering division develops instrumentation for ground- and space-based projects, and has extensive experience in working with private or public organisations from the aerospace and other innovation sectors.

IEEC is a private non-profit foundation, governed by a Board of Trustees composed of Generalitat de Catalunya and four other institutions that each have a research unit, which together constitute the core of IEEC R&D activity: the University of Barcelona (UB) with the research unit ICCUB — Institute of Cosmos Sciences; the Autonomous University of Barcelona (UAB) with the research unit CERES — Center of Space Studies and Research; the Polytechnic University of Catalonia (UPC) with the research unit CTE — Research Group in Space Sciences and Technologies; the Spanish Research Council (CSIC) with the research unit ICE — Institute of Space Sciences. IEEC is integrated in the CERCA network (Centres de Recerca de Catalunya).

Contacts
IEEC Public Information Office
Barcelona, Spain

Rosa Rodríguez Gasén
E-mail: comunicacio@ieec.cat

Scientist at IEEC-ICE/CSIC
Barcelona, Spain

Josep Maria Trigo Rodríguez
Institute of Space Science (CSIC)
E-mail: trigo@ice.csic.es

Press Release eleborated by the IEEC Public Information Office.
15
March 2019

Dark Energy Survey Workshop Meeting in Barcelona


Workshop for the cosmological analysis of DES 3 yrs. data organised by ICE and IFAE
DESY3KP
A focused workshop of the DES collaboration will be hosted jointly by the Institute of Space Science (IEEC-CSIC) and the
Institute for High Enery Physics (IFAE) from March 25th to 29th, 2019. This meeting, gathering around 50 scientist, will 
concentrate on the cosmological analysis of the first three years of DES data. 
14
March 2019

2nd Announcement: 3rd ICE Summer School -- 1st IEEE GRSS Instrumentation and Future Technologies Remote Sensing Summer School (IFT-R3S)


2nd Announcement: 3rd ICE Summer School, 1st IEEE GRSS Instrumentation and Future Technologies Remote Sensing Summer School (IFT-R3S)
Poster of the IFT-R3S
ICE-CSIC/IEEC
Institute of Space Sciences (CSIC-IEEC)
3rd Institute of Space Sciences Summer School and 
1st IEEE Geoscience and Remote Sensing society (GRSS) Instrumentation and Future Technologies (IFT) 

Remote Sensing Summer School (IFT-R3S)
Bellaterra (Barcelona) - 1-5 July 2019
  The Institute of Space Sciences (Institut de Ciències de l’Espai - ICE) is organizing its 3rd Institute of Space Sciences Summer School, which in this edition is linked to the 1st IEEE Geoscience and Remote Sensing society (GRSS) Instrumentation and Future Technologies (IFT) Remote Sensing Summer School (IFT-R3S).

The objective of the first Summer School on Instrumentation and Future Technologies for Remote Sensing is to promote future research in remote sensing, to connect future PhD students to research topics under the IEEE GRSS IFT Technical Committee, and to highlight the educational activities of the GRSS society. This IFT-R3S is meant to be the first of an itinerant series (annual or biannual) of IFT-R3S editions, moving to different towns and continents and hosted by other Instrumentation and Future Technologies Technical Committee (IFT-TC) groups.

The topics of this edition are:
  • SAR principles, modes of operation, spaceborne instrument, processing, interferometric SAR, bi-static SAR,
  • Reflectometry using Global Navigation Satellite Systems (GNSS) and other Sources of OPportunity (SoOP),
  • Lidar principles, Lidar applications, instruments, and processing techniques.

Information and application forms can be found at: http://www.ice.csic.es/summer2019

APLICATIONS are open since February 4th, 2019 and will close on April 26th, 2019. Acceptance of participants will be announced on April 30th, 2019. The school fees are 50 e for Master and PhD
students, and 100 e for young professionals.

A number of partial and full studentships will be available.

Additional information can be requested to: summer2019@ice.csic.es

Confirmed Lecturers and Topics

- OPENING SESSION
– The IEEE and GRSS societies, early career perspective: Prof. Adriano Camps, Past President IEEE Geoscience and Remote Sensing society (GRSS), Universitat Politecnica de Catalunya
(UPC), Spain
– Relevance and Impact of Remote Sensing into NOAA products: Dr. Lı́dia Cucurull, National Oceanic and Atmospheric Administration, USA
– Overview of Radar Remote Sensing Techniques: Dr. Scott Hensley, NASA/Jet Propulsion Laboratory, CA, USA

- SAR
– SAR principles, operation modes, spaceborne SAR instruments: Dr. Marwan Younis, DLR, Germany
– SAR processing: Dr. Scott Hensley, NASA/Jet Propulsion Laboratory, CA, USA
– SAR interferometry, Bi-static SAR: Dr. Pau Prats, DLR, Germany

- REMOTE SENSING WITH GNSS AND SoOP
– GNS Reflectometry and Radio Occultation: Dr. Estel Cardellach, Institute of Space Sciences (IEEC-CSIC), Spain
– Reflectometry with other Sources of OPportunity (SoOP): Dr. Rashmi Shah, NASA/Jet Propulsion Laboratory, CA, USA
– GNSS-R and SoOP-R instruments: Dr. Serni Ribó, Institute of Space Sciences (IEEC-CSIC), Spain

- LIDAR
– Lidar principles: Prof. Adolfo Comerón, Universitat Politecnica de Catalunya (UPC), Spain
– Lidar applications: Dr. Upendra N. Singh, Chair IEEE GRSS Instrumentation and Future Technologies Technical Committee (IFT), NASA/Langley Research Center, VA, USA
– Lidar Instruments and processing techniques: Prof. Alex Papayannis, President ICLAS, National Technical University of Athens (NTUA), Greece

- CLOSING REMARKS
– IEEE Young Professionals and Inspire, Develop, Empower, Advance (IDEA) activities: Dr. Shawn C. Kefauver, IEEE GRSS IDEA committee, Universitat de Barcelona, Spain
– School closure: Dr. Upendra Singh, Chair IEEE GRSS Instrumentation and Future Technologies Technical Committee (IFT), NASA/Langley Research Center, VA, USA

Organizing Committee

- General chair: Dr. Cardellach, Estel (ICE-CSIC & IEEC)
- Logistics and Finance: Mrs. Cortés, Noemí (ICE-CSIC & IEEC)
- Technical and educational contents – SAR: Dr. Younis, Marwan (DLR)
- Technical and educational contents – GNSS/SoOP: Dr. Shah, Rashmi (NASA/JPL)
- Technical and educational contents – Lidar: Dr. Tzeremes, Georgios (ESA/ESTEC)
- Link to GRSS: Dr. Singh, Upendra N. (NASA/LRC)
- GRSS communications POC: Dr. Burgin, Mariko (NASA/JPL)

Studentships

• CSIC-IEEC will provide a limited number of studentships to cover part or full costs of accommodation and/or short-distance travel.
• IEEE GRSS will provide a limited number of studentships to cover part of the costs of long-distance travel.
• Please note that students being granted by IEEE GRSS must be member of the IEEE at the time of accepting the studentship.
• Granted studentships will be communicated together with the letter of acceptance (end of April).
         
08
March 2019

Medal For Achievments of Tomsk Regional Government is awarded to Prof.S.D. Odintsov


Medal For Achievments of Tomsk Regional Government is awarded to Prof.S.D. Odintsov
Tomsk Regional Government (Russia) awarded Prof.S.D. Odintsov by the medal For Achievments 
01
March 2019

Honorary Professorship Award of Tomsk State Pedagogical University to Prof.S.D.Odintsov


Honorary Professorship Award of Tomsk State Pedagogical University in relation with his 60 years birthday, 28 February 2019
Prof.S.D. Odintsov is awarded by Honorary Professorship of Tomsk State Pedagogical University, Tomsk in relation with his 60 years birthday
14
February 2019

Carbonaceous chondrites provide clues about the delivery of water to Earth


Carbonaceous chondrites provide clues about the delivery of water to Earth
Sample collecting of meteorites in the Antarctica
Katherine Joy / ANSMET
  • A study led by researchers of Institute of Space Sciences (ICE, CSIC) and Institut d'Estudis Espacials de Catalunya (IEEC)  discovers how these meteorites retained water and organic material inside them before reaching our planet
  • Researchers suggest that billions of tons of carbonaceous chondrites reached Earth about 3.800 millions of years ago
An international study led by researchers from the Institute of Space Sciences (ICE, CSIC)and the Institut d'Estudis Espacials de Catalunya (IEEC) has discovered that carbonaceous chondrites, a class of meteorites, incorporated hydrated minerals along with organic material from the protoplanetary disk before the formation of planets. Scientists from the study published in the journal Space Science Reviews note that these meteorites played “an important role in the primordial Earth’s water enrichment” because they facilitated the transportation of volatile elements that were accumulated on the external regions of the so-called protoplanetary disk from which planets were formed more than 4.500 millions of years ago. Earth was formed in an environment close to the Sun, very much reduced due to the relative lack of oxygen.

Carbonaceous chondrites come from asteroidal bodies that due to their size, generally inferior to hundred kilometres, never melted, and neither suffered internal chemical differentiation as planets did. Thus, the study gives clues about the initial accretion phases of the first bodies that formed the planets. The meteorites analysed in this work belong to the NASA’s Antartic collection, whose CSIC’s Institute of Space Sciences is the only repository Spanish centre, and the meteorites that fell in Murchison (Australia) in 1969 and in Renazzo (Italy) in 1824. Representative samples of the two more-hydrated types of carbonaceous chondrites (CM and CR groups) have been studied.

“Chondrites constitute a fossil legacy of the creation of the planetesimals, which provide information about the accretion of the first building blocks of planets, and also about everything that happened inside them shortly after their formation. In this study, we want to go a step further to identify processes of water incorporation befallen in the same protoplanetary disk”, explains CSIC researcher Josep M. Trigo-Rodríguez, who works at the Institute of Space Sciences and has led the study.

ICE/IEEC researcher adds: “There is a great debate about the origin of water in Earth and our study proves that carbonaceous chondrites were able to transport water in a very efficient way in their matrices. That water seems to come from two types of objects formed at different distances from the Sun: hydrated asteroids and comets. Obviously, in order to know the origin of water in Earth, we must study not only the comets but also the carbonaceous chondrites that come from an asteroid population called transitional. These bodies were far more numerous 4.000 millions of years ago, but suffered a gravitational destabilisation during Jupiter and Saturn’s migration to its current location. Those that did not end being swallowed by Jupiter and Saturn were rejected towards the terrestrial planets and to other regions of the Solar System, transporting water and organic material inside them”, explains the researcher.

The study also points at the direct implications for the origin of water in Earth. “Our calculations indicate that, coinciding with the so-called ‘Heavy Bombardment’ produced by the gravitational destabilisation of the main asteroid belt, billions of tons of carbonaceous chondrites reached Earth about 3.800 millions of years ago. And they did it transporting in their fine matrices water and other volatile elements in form of hydrated minerals”, says Trigo.

In this study have participated Safoura Tanbakouei and Victoria Cabedo from the Institute of Space Sciences; Albert Rimola from the Universitat Autònoma de Barcelona; and Martin Lee from the University of Glasgow (Scotland).

Aims for future missions
Currently, there are two ongoing missions for sample return from primitive asteroids: NASA’s OSIRIS-Rex and JAXA’s (Japan Aerospace Exploration Agency) Hayabusa 2. The results from the carbonaceous chondrites’ analysis at a micro- and nanoscale that are published in this new study reveal the importance of the sample-return missions, that can bring to Earth rocks less altered by collisions than the meteorites that land on the terrestrial surface.
 
Trigo-Rodríguez J.M., Rimola A., Tanbakouei, S., Cabedo V. y Lee M.R. Accretion of water in carbonaceous chondrites: current evidence and implications for the delivery of water to early Earth. Space Science Reviews. DOI: 10.1007/s11214-019-0583-0.

The paper can be found in  Arxiv.

Press Release adapted from the PR generated by the Communication Department of CSIC
04
February 2019

The last two GFA units will be sent to the USA for their integration in the DESI instrument


The last two GFA units will be sent to the USA for their integration in the DESI instrument
Members of IFAE and ICE/IEEC involved in the development of the GFA units of DESI
Otger Ballester (IFAE)
The last two Guiding, Focusing and Alignment  (GFA) units will be sent to LBNL (Lawrence Berkeley National Laboratory, USA) in the next few days for their integration in DESI (Dark Energy Spectroscopic Instrument) in the framework of the international collaboration.

The Spanish institutions, Institut de Física d'Altes Energies (IFAE), Institut de Ciències de l'Espai (ICE, CSIC), Institut d'Estudis Espacials de Catalunya (IEEC), CIEMAT and IFT/UAM have developed, built and tested twelve GFA units (ten of them to be integrated in the instrument plus two spares). The GFA units use 2 x 2 k Teledyne-e2v CCD detectors. Our team has developed the electronics, mechanics and cooling systems and their associated software. These units will allow to focus the optical fibres of DESI, align these 5,000 fibres with the objects to be observed and to do the guiding during the exposure time.
 
DESI will see its first light in the next months.
31
January 2019

Dr. Ignasi Ribas has been awarded with the Premi Ciutat de Barcelona 2018


Dr. Ignasi Ribas has been awarded with the Premi Ciutat de Barcelona 2018, category of experimental sciences and technology
Dr. Ignasi Ribas, researcher of the Institute of Space Sciences (ICE, CSIC) and director of Institut d'Estudis Espacials de Catalunya, has been awarded with the Premi Ciutat de Barcelona 2018, in the category of Experimental Sciences and Technology for his work leadering the discover of an exoplanet around the nearest Barnard's star. This work was published in the prestigious journal Nature last November.
23
January 2019

Chatea con una Astrónoma


12 horas de chat abierto con tres astrónomas del ICE el 7 de febrero
Chatea con una Astrónoma
El 7 de febrero se realizará un chat de 12 horas, de las 10 de la mañana hasta las 10 de la noche, a través del cual se podrán formular preguntas a astrónomas profesionales. Entre ellas estarán Gemma Busquet, Nancy Elias y Mar Mezcua, investigadoras del ICE. Esta actividad está organizada por el Comité Mujer y Astronomía de la Sociedad Española de Astronomía (www.sea-astronomia.es).

El enlace para conectarse al chat es: htpps://app.purechat.com/w/11FMujerYAstro.
22
January 2019

El satélite PAZ registra las primeras señales sobre fuertes precipitaciones


Hoy se da acceso público a los datos de los primeros cinco meses de misión, lo que servirá para profundizar en la predicción del tiempo
A ROHP-PAZ profile crossing the bands of intense rain in a category-3 cyclonic storm
Image from the supplementary materials in Cardellach et al., 2019.
  • Lanzado en febrero de 2018, el satélite español lleva incorporada tecnología diseñada por científicos del CSIC
  • Hoy se da acceso público a los datos de los primeros cinco meses de misión
  • Esta información servirá para profundizar en parámetros atmosféricos clave en la predicción del tiempo
Un equipo de investigadores del Instituto de Ciencias del Espacio del Consejo Superior de Investigaciones Científicas (CSIC) y del Instituto de Estudios Espaciales de Cataluña ha analizado los datos obtenidos por el experimento con señales GPS a bordo del satélite español de observación de la Tierra PAZ, lanzado en febrero de 2018, y ha confirmado que las señales registradas son sensibles a las precipitaciones intensas. El trabajo y los datos analizados por los científicos aparecen publicados en el último número de la revista Geophysical Research Letter.

Las señales GPS están siendo capturadas por el satélite con tecnologías concebidas y diseñadas por este grupo de científicos del CSIC en el marco del experimento ROHP-PAZ, capaz de realizar radio ocultaciones. Las medidas miden normalmente las propiedades termodinámicas de la atmósfera (temperatura, presión y humedad) y, además, a diferentes alturas. Éstas, por primera vez, están siendo obtenidas en dos polarizaciones.

Las radio ocultaciones son una técnica de observar un medio, normalmente la atmósfera de un planeta, utilizando dos elementos: uno que transmite señales radio o microondas (fuente) y otro elemento que los recibe (receptor). La particularidad de esta técnica es que, si se unen en línea recta los elementos transistor y receptor, ésta cruza la Tierra, o sea, los elementos están ocultos por la Tierra. A pesar de ello, la señal sigue recibiéndose porque el rayo se flexiona.

“La clave está en relacionar la flexión de la trayectoria de la señal con las propiedades de la atmósfera. En el planeta Tierra, esta técnica se realiza con señales de los sistemas globales de navegación por satélite, como, por ejemplo, los GPS”, la investigadora del CSIC Estel Cardellach, que trabaja en el Instituto de Ciencias del Espacio.

Los sistemas de navegación son las fuentes, y un receptor a bordo de un satélite a baja altura orbital (como el satélite PAZ) contiene el receptor. El receptor puede medir con mucha precisión el ángulo de flexión de la señal, y de este ángulo se extraen perfiles verticales de temperatura, presión y humedad de la atmósfera.

La novedad del experimento ROHP-PAZ es que mide además el retardo que sufre la señal polarizada horizontalmente respecto al retardo de la polarizada verticalmente. La hipótesis del experimento es que este retardo relativo ocurre cuando el rayo cruza precipitaciones intensas.
“Este experimento pretende demostrar un nuevo concepto de medida, una técnica completamente nueva que nunca se había probado. Ahora sabemos que las señales son sensibles a precipitación intensa, y debemos determinar el mejor uso de los datos para que la información que contienen pueda extraerse y ser útil. Este supondrá el desarrollo de algoritmos de inversión o extracción de información geofísica”, detalla la investigadora del CSIC.
Primeros resultados

Los resultados obtenidos durante los primeros cinco meses de misión indican que, efectivamente, hay efectos detectables en la polarimetría de las señales que son debidos a los hidrometeoros (gotas de lluvia y otras partículas de hielo o agua y hielo). Además, cuanto más intensa es la lluvia, más intenso es el efecto polarimétrico.

La investigadora del CSIC añade: “Las estructuras verticales detectadas en nuestras señales polarimétricas son coherentes con las estructuras de precipitación que se están observando. Estos hechos nos indican que las señales polarimétricas en ROHP-PAZ responden a precipitación intensa, confirmando la hipótesis del experimento.

En los próximos meses, los investigadores esperan poder cerrar la calibración del instrumento y que toda esa información pueda ser interpretada fácilmente por la comunidad científica. Para ello está en marcha ya la colaboración con equipos del Jet Propulsion Laboratory de la NASA, la University Corporation for Atmospheric Research y la National Oceanic and Atmospheric Administration.

Hoy se da acceso público a los primeros datos polarimétricos, correspondientes a los cinco primeros meses de misión, en la web del proyecto https://paz.ice.csic.es/. El objetivo es que los datos termodinámicos se distribuyan en tiempo casi real a los servicios de meteorología mundiales. La National Oceanic and Atmospheric Administration usará sus antenas e infraestructura para obtener los datos de ROHP-PAZ cada vez que tengan contacto con el satélite (idealmente una vez cada órbita, es decir, cada hora y media). “Las pruebas de esta operación ya han empezado y esperamos poder comenzar a diseminar pronto los datos operacionalmente”, indica Cardellach.

El satélite PAZ con tecnología radar es una misión dual, con aplicaciones civiles y militares. HISDESAT es la propietaria, operadora y explotadora del satélite, cuyo cometido es ofrecer información precisa para múltiples aplicaciones desde su órbita polar alrededor de la Tierra.

Referencia: Cardellach, E. et al.. (2019), Sensing heavy precipitation with GNSS polarimetric radio occultations, Geophys. Res. Lett., Jan. 2019, https://doi.org/10.1029/2018GL080412
 
Web del experimento ROHP-PAZ y acceso a los datos: https://paz.ice.csic.es/

Comunicado de prensa elaborado por el Departamento de Comunicación del CSIC
Institute of Space Sciences (IEEC-CSIC)

Campus UAB, Carrer de Can Magrans, s/n
08193 Barcelona.
Phone: +34 93 737 9788
Email: ice@ice.csic.es
Website developed with RhinOS

Follow us


An institute of the Consejo Superior de Investigaciones Científicas

An institute of the Consejo Superior de Investigaciones Científicas
Affiliated with the Institut d'Estudis Espacials de Catalunya

Affiliated with the Institut d'Estudis Espacials de Catalunya