News & Press releases

Número de entradas: 102

08
Septiembre 2016

Young Magnetar Likely the Slowest Pulsar Ever Detected


NASA Press Release on the discovery of a new magnetar as being the slowest pulsar ever detected
Using NASA’s Chandra X-ray Observatory and other X-ray observatories, astronomers have found evidence for what is likely one of the most extreme pulsars, or rotating neutron stars, ever detected. The source exhibits properties of a highly magnetized neutron star, or magnetar, yet its deduced spin period is thousands of times longer than any pulsar ever observed. For decades, astronomers have known there is a dense, compact source at the center of RCW 103, the remains of a supernova explosion located about 9,000 light years from Earth.  This composite image shows RCW 103 and its central source, known officially as 1E 161348-5055 (1E 1613, for short), in three bands of X-ray light detected by Chandra. In this image, the lowest energy X-rays from Chandra are red, the medium band is green, and the highest energy X-rays are blue. The bright blue X-ray source in the middle of RCW 103 is 1E 1613. The X-ray data have been combined with an optical image from the Digitized Sky Survey. Observers had previously agreed that 1E 1613 is a neutron star, an extremely dense star created by the supernova that produced RCW 103. However, the regular variation in the X-ray brightness of the source, with a period of about six and a half hours, presented a puzzle.  All proposed models had problems explaining this slow periodicity, but the main ideas were of either a spinning neutron star that is rotating extremely slowly because of an unexplained slow-down mechanism, or a faster-spinning neutron star that is in orbit with a normal star in a binary system. On June 22, 2016, an instrument aboard NASA’s Swift telescope captured the release of a short burst of X-rays from 1E 1613. The Swift detection caught astronomers’ attention because the source exhibited intense, extremely rapid fluctuations on a time scale of milliseconds, similar to other known magnetars. These exotic objects possess the most powerful magnetic fields in the Universe –trillions of times that observed on the Sun – and can erupt with enormous amounts of energy. Seeking to investigate further, a team of astronomers led by Nanda Rea of the Institute of Space Sciences (CSIC-IEEC) quickly asked two other orbiting telescopes – NASA’s Chandra X-ray Observatory and Nuclear Spectroscopic Telescope Array, or NuSTAR – to follow up with observations. New data from this trio of high-energy telescopes, and archival data from Chandra, Swift and ESA’s XMM-Newton confirmed that 1E 1613 has the properties of a magnetar, making it only the 30th known. These properties include the relative amounts of X-rays produced at different energies and the way the neutron star cooled after the 2016 burst and another burst seen in 1999. The binary explanation is considered unlikely because the new data show that the strength of the periodic variation in X-rays changes dramatically both with the energy of the X-rays and with time. However, this behavior is typical for magnetars. But the mystery of the slow spin remained. The source is rotating once every 24,000 seconds (6.67 hours), much slower than the slowest magnetars known until now, which spin around once every 10 seconds. This would make it the slowest spinning neutron star ever detected. Astronomers expect that a single neutron star will be spinning quickly after its birth in the supernova explosion and will then slow down over time as it loses energy. However, the researchers estimate that the magnetar within RCW 103 is about 2,000 years old, which is not enough time for the pulsar to slow down to a period of 24,000 seconds by conventional means. While it is still unclear why 1E 1613 is spinning so slowly, scientists do have some ideas. One leading scenario is that debris from the exploded star has fallen back onto magnetic field lines around the spinning neutron star, causing it to spin more slowly with time. Searches are currently being made for other very slowly spinning magnetars to study this idea in more detail. See https://www.nasa.gov/mission_pages/chandra/young-magnetar-likely-the-slowest-pulsar-ever-detected.html for the original NASA Press Release.
31
Agosto 2016

Descubierto el púlsar más lento


Note de Prensa del CSIC sobre el descubrimiento del púlsar más lento
Un estudio internacional liderado por el Consejo Superior de Investigaciones Científicas (CSIC) ha identificado el púlsar más lento detectado hasta el momento. Se trata de un magnetar atrapado en los remanentes de una supernova brillante (denominada RCW103), que explotó hace unos 2.000 años y se encuentra a unos 9.000 años luz de la Tierra.  Los resultados del trabajo han sido publicados en la revista The Astrophysical Journal Letters.
13
Junio 2016

LISA Pathfinder exceeds expectations


ESA’s LISA Pathfinder mission has demonstrated the technology needed to build a space-based gravitational wave observatory.
ESA’s LISA Pathfinder mission has demonstrated the technology needed to build a space-based gravitational wave observatory. Results from only two months of science operations show that the two cubes at the heart of the spacecraft are falling freely through space under the influence of gravity alone, unperturbed by other external forces, to a precision more than five times better than originally required. In a paper published today in Physical Review Letters, the LISA Pathfinder team show that the test masses are almost motionless with respect to each other, with a relative acceleration lower than 1 part in ten millionths of a billionth of Earth’s gravity. The demonstration of the mission’s key technologies opens the door to the development of a large space observatory capable of detecting gravitational waves emanating from a wide range of exotic objects in the Universe. Hypothesised by Albert Einstein a century ago, gravitational waves are oscillations in the fabric of spacetime, moving at the speed of light and caused by the acceleration of massive objects. They can be generated, for example, by supernovas, neutron star binaries spiralling around each other, and pairs of merging black holes. Even from these powerful objects, however, the fluctuations in spacetime are tiny by the time they arrive at Earth – smaller than 1 part in 100 billion billion. Sophisticated technologies are needed to register such minuscule changes, and gravitational waves were directly detected for the first time only in September 2015 by the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO). This experiment saw the characteristic signal of two black holes, each with some 30 times the mass of the Sun, spiralling towards one another in the final 0.3 seconds before they coalesced to form a single, more massive object. The signals seen by LIGO have a frequency of around 100 Hz, but gravitational waves span a much broader spectrum. In particular, lower-frequency oscillations are produced by even more exotic events such as the mergers of supermassive black holes. With masses of millions to billions of times that of the Sun, these giant black holes sit at the centres of massive galaxies. When two galaxies collide, these black holes eventually coalesce, releasing vast amounts of energy in the form of gravitational waves throughout the merger process, and peaking in the last few minutes. To detect these events and fully exploit the new field of gravitational astronomy, it is crucial to open access to gravitational waves at low frequencies between 0.1 mHz and 1 Hz. This requires measuring tiny fluctuations in distance between objects placed millions of kilometres apart, something that can only be achieved in space, where an observatory would also be free of the seismic, thermal and terrestrial gravity noises that limit ground-based detectors.   LISA Pathfinder was designed to demonstrate key technologies needed to build such an observatory. A crucial aspect is placing two test masses in freefall, monitoring their relative positions as they move under the effect of gravity alone. Even in space this is very difficult, as several forces, including the solar wind and pressure from sunlight, continually disturb the cubes and the spacecraft. Thus, in LISA Pathfinder, a pair of identical, 2 kg, 46 mm gold–platinum cubes, 38 cm apart, fly, surrounded, but untouched, by a spacecraft whose job is to shield them from external influences, adjusting its position constantly to avoid hitting them. “LISA Pathfinder’s test masses are now still with respect to each other to an astonishing degree, ” says Alvaro Giménez, ESA’s Director of Science. “This is the level of control needed to enable the observation of low-frequency gravitational waves with a future space observatory.” LISA Pathfinder was launched on 3 December 2015, reaching its operational orbit roughly 1.5 million km from Earth towards the Sun in late January 2016. The mission started operations on 1 March, with scientists performing a series of experiments on the test masses to measure and control all of the different aspects at play, and determine how still the masses really are. “The measurements have exceeded our most optimistic expectations,” says Paul McNamara, LISA Pathfinder Project Scientist. “We reached the level of precision originally required for LISA Pathfinder within the first day, and so we spent the following weeks improving the results a factor of five.” These extraordinary results show that the control achieved over the test masses is essentially at the level required to implement a gravitational wave observatory in space. “Not only do we see the test masses as almost motionless, but we have identified, with unprecedented precision, most of the remaining tiny forces disturbing them,” explains Stefano Vitale of University of Trento and INFN, Italy, Principal Investigator of the LISA Technology Package, the mission’s core payload.   The first two months of data show that, in the frequency range between 60 mHz and 1 Hz, LISA Pathfinder’s precision is only limited by the sensing noise of the laser measurement system used to monitor the position and orientation of the cubes. “The performance of the laser instrument has already surpassed the level of precision required by a future gravitational-wave observatory by a factor of more than 100,” says Martin Hewitson, LISA Pathfinder Senior Scientist from Max Planck Institute for Gravitational Physics and Leibniz Universität Hannover, Germany. At lower frequencies of 1–60 mHz, control over the cubes is limited by gas molecules bouncing off them – a small number remain in the surrounding vacuum. This effect was seen reducing as more molecules were vented into space, and is expected to improve in the following months. “We have observed the performance steadily improving, day by day, since the start of the mission,” says William Weber, LISA Pathfinder Senior Scientist from University of Trento, Italy. At even lower frequencies, below 1 mHz, the scientists measured a small centrifugal force acting on the cubes, from a combination of the shape of LISA Pathfinder’s orbit and to the effect of the noise in the signal of the startrackers used to orient it. While this force slightly disturbs the cubes’ motion in LISA Pathfinder, it would not be an issue for a future space observatory, in which each test mass would be housed in its own spacecraft, and linked to the others over millions of kilometres via lasers. “At the precision reached by LISA Pathfinder, a full-scale gravitational wave observatory in space would be able to detect fluctuations caused by the mergers of supermassive black holes in galaxies anywhere in the Universe,” says Karsten Danzmann, director at the Max Planck Institute for Gravitational Physics, director of the Institute for Gravitational Physics of Leibniz Universität Hannover, Germany, and Co-Principal Investigator of the LISA Technology Package. Today’s results demonstrate that LISA Pathfinder has proven the key technologies and paved the way for such an observatory, as the third ‘Large-class’ (L3) mission in ESA’s Cosmic Vision programme.
03
Junio 2016

Exoplanetas con materia oscura?


artículo de divulgación científica en la Sección Panorama de la revista Investigación y Ciencia.
Laura Tolos, investigadora Ramon y Cajal del Instituto de Ciencias del Espacio, ha publicado recientemente un artículo de divulgación científica en la Sección Panorama de la revista Investigación y Ciencia. Se trata de un estudio teórico en astrofísica sobre la posible existencia de un nuevo tipo de objeto astronómico con materia oscura en su interior, de una masa similar a los planetas conocidos pero con un tamaño muy inferior. Su observación se podría llevar a cabo a través de las técnicas de observación de planetas fuera de nuestro Sistema Solar.
06
Mayo 2016

ESA’s Integral Picture of May, the detection of the first thermonuclear supernova with gamma rays


The INTEGRAL space mission has detected for the first time a thermonuclear supernova with gamma rays. This is the SN2014J, a Type Ia supernova that exploded on Jan. 21, 2014 in M82, the Cigar Galaxy.
The work, which has involved the Institute of Space Sciences (IEEC-CSIC), has been published in the journal Astronomy & Astrophysics   The INTEGRAL space mission has detected for the first time a thermonuclear supernova with gamma rays. This is the SN2014J, a Type Ia supernova that exploded on Jan. 21, 2014 in M82, the Cigar Galaxy. The results of the study had been published in the journal Astronomy & Astrophysics and are the INTEGRAL picture of May on the ESA website.   Type Ia supernovae   Type Ia supernovae are the outcome of the thermonuclear explosion of a carbon/oxygen white dwarf in a stellar binary system. During this explosion significant amounts of radioactive isotopes are synthesized, the most abundant being 56Ni which decays to 56Co and further to 56Fe. The decay of these radioactive isotopes produces gamma-rays that thermalize and are responsible of the luminosity of the supernova. As the expansion of the debris proceeds, matter becomes more and more transparent and an increasing number of gamma rays avoid thermalization and escape. These escaping gamma rays can be used as a diagnostic tool for studying the structure of the exploding star and the characteristics of the explosion.   Unexpected results   Jordi Isern, researcher at the Institute of Space Sciences (IEEC-CISC)  and responsible for the international team that conducted the study explains that “the results discussed in this article do not correspond with any model of type Ia supernova explosion known as suggests the presence of the radioactive isotope 56Ni in external layers and moving at high speeds. If confirmed, this completely unexpected result would force to rethink current ideas about the spread of the explosion and the distribution of ashes in the outer layers of the type Ia supernovas”.   “In this sense.”  concludes Isern “the detection and analysis of gamma ray emission in other supernova explosions are of the utmost importance to determine the origin and development of these events.” we must remember that these explosions are responsible for the existence of almost all the iron in the galaxy and, thanks to its brightness, it was discovered that the Univers expands rapidly due to the existence of dark energy.     The figure on the left displays the count rate contours obtained by SPI during the period 16—35 days after the explosion in the energy band,145—165 keV, which contains the most prominent line of 56Ni: the 158 keV line. As it can be seen, the maximum of the emission coincides with the position of the supernova and it is clearly isolated from the neighboring sources. The excess in the position of the supernova is 5 sigma.In the low energy region, the analysis of the SPI data has shown the presence of a completely unexpected broad, redshifted feature related to the 158 keV56Ni line. The redshift, ~3.2 keV, indicates that the radioactive material is receding from the observer at a velocity ~6,000 km/s, while the width of the line, ~4.9 keV, suggests a dispersion velocity of ~10,000 km/s. The figure on the right displays the gamma-ray signature of SN2014J in the IBIS/ISGRI data. The plot represents the signal-to-noise contour map in the 67.5—189 keV band obtained during the same period as SPI. As before, the supernova is clearly isolated from the neighboring sources and the average excess in the supernova position is 5.4 sigma.   Article reference   J. Isern, P. Jean, E. Bravo, J. Knödlseder, F. Lebrun, E. Churazov, R. Sunyaev, A. Domingo, C. Badenes, DH Hartmann, P. Hoeflich, M. Renaud, S. Soldi N. Elias – Rosa, M. Hernanz, E. Domínguez, D. García-Senz, GG Licht, G. Vedrenne, P. Von Ballmoos. Gamma-Ray emisión from SN2014J near maximum optical light. Astronomy & Astrophysics. 588, A67 (2016).
26
Abril 2016

A review of Laura Tolós, cover of the April issue of the journal Reviews of Modern Physics


The researcher at the Institute of Space Sciences (IEEC-CISC) Laura Tolos has published with several authors a Colloquium paper in the journal Reviews of Modern Physics on the techniques used in measuring the neutron star equation of state using x-ray tim
The researcher at the Institute of Space Sciences (IEEC-CISC) Laura Tolos has published with several authors a Colloquium paper in the journal Reviews of Modern Physics on the techniques used in measuring the neutron star equation of state using x-ray timing. One of the graphics illustrating this review occupies the cover of the April issue of the magazine. This is the schematic structure of a neutron star.     One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. The article “Measuring the neutron star equation of state using x-ray timing’ analyses the three main techniques that can be used to achieve this goal.   Article reference   Anna L. Watts, Nils Andersson, Deepto Chakrabarty, Marco Feroci, Kai Hebeler, Gianluca Israel, Frederick K. Lamb, M. Coleman Miller, Sharon Morsink, Feryal Özel, Alessandro Patruno, Juri Poutanen, Dimitrios Psaltis, Achim Schwenk, Andrew W. Steiner, Luigi Stella, Laura Tolos, and Michiel van der Klis. Colloquium: Measuring the neutron star equation of state using x-ray timing. Rev. Mod. Phys. 88, 021001 – Published 13 April 2016
26
Abril 2016

Observació del trànsit de Mercuri per davant del Sol


El proper 9 de maig el planeta Mercuri, amb una òrbita interior a la terrestre, transitarà per davant del Sol.
El proper 9 de maig el planeta Mercuri, amb una òrbita interior a la terrestre, transitarà per davant del Sol. Durant 7 hores es podrà observar la seva silueta fosca projectada sobre el disc brillant del Sol que avança d’est a oest. Aquest fenomen va ser observat per darrera vegada des de Catalunya el 2003 i tornarà a repetir-se el 2019.   L’Institut de Ciències de l'Espai (ICE) organitza una observació pública des de les seves instal·lacions al Campus de la UAB, carrer de Can Magrans, s/n, entre la Facultat de Ciències i el SAF. L’observació directa del Sol pot ser perjudicial per a l’ull humà si no es tenen els coneixements i els mitjans adequats per fer-ho, per la qual cosa no es recomana mirar el Sol sense una supervisió qualificada. A l’ICE disposem de telescopis que s’utilitzaran per projectar la imatge del Sol sobre una pantalla i també podreu utilitzar ulleres homologades per tal de veure el fenomen en directe i de forma segura.   L’observació del trànsit de Mercuri es veurà condicionada per les condicions meteorològiques. Si no hi ha núvols, el personal de l’ICE us farà una breu explicació d’aquest fenomen i també podreu conèixer de primera mà la recerca que fem des de l’institut.   Us esperem el dilluns 9 de maig a partir de la una del migdia.
07
Marzo 2016

Nuevo Director el en Instituto de Ciencias del Espacio


El 26 de febrero de 2016, el Presidente del Consejo Superior de Investigaciones Científicas ha nombrado al Profesor ICREA Diego F. Torres como el nuevo director del Instituto de Ciencias del Espacio (IEEC-CSIC).
El 26 de febrero de 2016, el Presidente del Consejo Superior de Investigaciones Científicas ha nombrado al Profesor ICREA Diego F. Torres como el nuevo director del Instituto de Ciencias del Espacio (IEEC-CSIC)

Sucede al Prof. Jordi Isern Vilaboy en esta posición.

El Prof. Torres (42) nació en Buenos Aires, Argentina, donde estudió hasta la obtención de un doctorado en física (sobre cosmología y astrofísica de teorías gravitacionales extendidas) por la Universidad Nacional de La Plata. Es miembro del Instituto de Ciencias del Espacio desde el año 2006, donde llegó después de varios años de investigación en la Universidad de Princeton y el Laboratorio Lawrence Livermore, entre otras instituciones. Su investigación se centra en objetos compactos galácticos y rayos cósmicos, tema sobre el que ha publicado más de 200 artículos en revistas internacionales. El Prof. Torres es el jefe del grupo de investigación MAP, que realiza estudios teóricos y multi-frecuencia de pulsares, sus nebulosas circundantes, y el origen de los rayos cósmicos.

La investigación del Prof. Torres fue galardonada en varias ocasiones, recibiendo el Premio Shakti Duggal en Física de Rayos Cósmicos de la Unión de Física Internacional, la Beca Guggenheim, el Premio Wilhelm Friedrich Bessel de la Fundación Alexander von Humboldt, o la Cátedra Visitante de la Academia China de Ciencias, entre otras distinciones.
19
Febrero 2016

Presentació del llibre 'Missatge d'anys llum'


L'editorial Comanegra publica el llibre 'Missatge d'anys llum', de Xènia Dikalo i Eduard Mondéjar
L'editorial Comanegra publica el llibre 'Missatge d'anys llum', de Xènia Dikalo i Eduard Mondéjar, que presentaran el proper dijous 25 de febrer a les 19.30 h a la Nau Comanegra (Consell de Cent, 159. 08015 Barcelona) acompanyats de l'investigador de l'Institut de Ciències de l'Espai, Ignasi Ribas.
  La ciència astronòmica actual ens presenta un creixent nombre de nous planetes semblants al nostre, territoris encara inexplorats però amb alguna possibilitat d’albergar vida. Aquests descobriments alimenten cada vegada més la idea de poder contactar amb altres possibles civilitzacions i, fins i tot, d’imaginar l’espècie humana vivint més enllà del planeta Terra. 'Missatge d’anys llum' és una crida a exploradors que vulguin endinsar-se des d’un punt de vista científic en aquests immensos sistemes naturals i esbrinar com podríem establir un contacte interestel·lar.   Dia i hora de la presentació: dijous 25 de febrer a les 19.30
On: La Nau Comanegra (Consell de Cent, 159. 08015 Barcelona)
Enllaç a la web: http://comanegra.com/art-cultura-i-pensament/327-missatge-anys-llum.html
11
Febrero 2016

El proper dilluns 15 de febrer s'inicia el cicle de conferències "Dilluns de Ciència: L’UNIVERS VIST PELS SATÈL·LITS"


El proper dilluns 15 de febrer s'inicia el cicle de conferències "Dilluns de Ciència: L’UNIVERS VIST PELS SATÈL·LITS", organitzat per la Residència d'Investigadors.
La recerca sobre el cosmos sempre ha atret molts investigadors i ciutadans per diferents motius, però, a mesura que ha passat el temps, s’ha posat de manifest que fer recerca en l’espai és quelcom més que un desig per conèixer-lo. A hores d’ara, fer recerca sobre l’espai és cada cop més fonamental per a la comprensió de molts fenòmens físics, químics i biològics. A la vegada, tot allò relacionat amb el desenvolupament de noves tecnologies esdevé clau per a molts dels avenços que, després, s’apliquen al progrés i al benestar general de la Humanitat, per la qual cosa la indústria espacial esdevé un dels camps en els quals la innovació tecnològica és ben present i cada cop té un impacte més gran en les activitats econòmiques dels països més avançats.
En aquest cicle de conferències, l’Institut de Ciències de l’Espai del CSIC (ICE-CSIC) presentarà algunes de les recerques més destacades en les quals és present. L’ICE-CSIC és una de les entitats que forma l’Institut d’Estudis Espacials de Catalunya (IEEC), i té com a objectiu principal l’avenç general en els estudis sobre el cosmos, tot ajudant a millorar la capacitat científica i tecnològica del nostre sistema de ciència i tecnologia, participant en projectes i missions espacials de primer ordre a nivell internacional.

Totes les conferències tindran lloc a les 18:30 h, a la Sala d’Actes de la Residència d’Investigadors CSIC-Generalitat de Catalunya, Carrer Hospital 64, Barcelona.

Les conferències es podran també seguir en directe a través de l'enllaç:
http://www.streamingbarcelona.com/plataforma/residenciainvestigadors/

El programa detallat i els resums de les conferències es poden trobar AQUÍ.

15 de febrer de 2016
Mirant el món amb GPS
Dra. Estel Cardellach (ICE-CSIC/IEEC)

22 de febrer de 2016
La missió LISA Pathfinder: aprenent a escoltar l’Univers amb les ones que Einstein va predir
Dr. Carlos F. Sopuerta (ICE-CSIC/IEEC)

29 de febrer de 2016
La missió espacial Euclides: estudiant l’energia fosca
Dr. Francisco J. Castander (ICE-CSIC/IEEC)

7 de març de 2016
Recerca espacial en altes energies. Els fenòmens més energètics de l’Univers
Dra. Margarida Hernanz (ICE-CSIC/IEEC)

14 de març de 2016
Cercant una nova Terra
Dr. Ignasi Ribas (ICE-CSIC/IEEC)

Més informació a:
DILLUNS DE CIÈNCIA: L'Univers vist per satèl·lits
Institute of Space Sciences (IEEC-CSIC)

Campus UAB, Carrer de Can Magrans, s/n
08193 Barcelona.
Phone: +34 93 737 9788
Email: ice@ice.csic.es
Website developed with RhinOS

Síguenos


An institute of the Consejo Superior de Investigaciones Científicas

An institute of the Consejo Superior de Investigaciones Científicas
Affiliated with the Institut d'Estudis Espacials de Catalunya

Affiliated with the Institut d'Estudis Espacials de Catalunya