Formación - Tesis de Máster

< volver

Data Analysis Techniques for LISA PathFinder

Estado: ongoing

Estudiante(s): Nikolaos Karnesis
Universidad: Universitat Autònoma de Barcelona
Descripción
LISA is a joint mission between the European Space Agency (ESA) and the US National Aeronautics and Space Administration (NASA) that will become the first space-based Gravitational-Wave (GW) detector. LISA is a constellation of three spacecrafts that will access GW signals at frequencies of 1mHz and below, around five orders of magnitude below the kHz band where Earth-based detectors, such as VIRGO and LIGO operate. LISA will open a new window to the observation of the Universe and is expected to provide revolutionary discoveries in the areas of Astrophysics, Cosmology, and Fundamental Physics. Due to the technological complexity of LISA, ESA approved a percursor mission, LISA PathFinder (LPF), to test the readiness of the main LISA technology. The scientific working principle of LISA is the detection of tiny relative displacements between pairs of proof masses in nominally geodesic motion, or free fall, induced by passing GWs. LPF consists in a single spacecraft hosting two proof masses in nominal free fall, whose motions are monitored by means of a Mach-Zender laser interferometer. LPF is expected to be launched around 2012 and its ultimate objective is to measure the noise in the proof masses motion, and to understand its physical origin. There are many sources of noise identified (thermal, magnetic, particles of cosmic origin, etc), and properly modelling them requires a careful planning of the measurement sequence, plus of course the use of suitable analysis tools to process the various data channels. The research work proposed for this PhD project consists of the following three points: 1. Development of Data Analysis Tools for the LTPDA software tool in order to perform the Data Analysis during the mission operations and also for the scientific parts that will be carried out by our Research Group. Also to participate in the Mock Data Analysis challenges organized by the LPF community. 2. To study how to develop a LISA noise model from the outcome of the LPF mission. 3. To develop Data Analysis Tools for LISA, which consists in the detection of GW signals and the estimation of the physical parameters of the associated sources. Also to participate in Mock Data Analysis challenges organized by the LISA scientific community (LISC).