Repulsive Casimir Forces from Additional Dimensions

Emilio Elizalde
ICE/CSIC & IEEC, UAB, Barcelona

QFEXT09, Oklahoma, September 21-25, 2009
Outline

On Einstein’s Cosmological Constant
Outline

- On Einstein’s Cosmological Constant
- Casimir Effect & the ζ Function Method
Outline

- On Einstein’s Cosmological Constant
- Casimir Effect & the ζ Function Method
- CE and Accelerated Expansion (Dark Energy)
Outline

- On Einstein’s Cosmological Constant
- Casimir Effect & the ζ Function Method
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
Outline

- On Einstein’s Cosmological Constant
- Casimir Effect & the ζ Function Method
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
- Repulsion from Higher Dimensions and BCs
Outline

- On Einstein’s Cosmological Constant
- Casimir Effect & the \(\zeta \) Function Method
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
- Repulsion from Higher Dimensions and BCs
- Gravity Equations as Equations of State
Outline

- On Einstein’s Cosmological Constant
- Casimir Effect & the ζ Function Method
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
- Repulsion from Higher Dimensions and BCs
- Gravity Equations as Equations of State
- Phase Space of Hořava-Lifshitz Cosmologies
Outline

- On Einstein’s Cosmological Constant
- Casimir Effect & the \(\zeta \) Function Method
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
- Repulsion from Higher Dimensions and BCs
- Gravity Equations as Equations of State
- Phase Space of Hořava-Lifshitz Cosmologies

With THANKS to:
S. Carloni, G. Cognola, J. Haro, S.D. Odintsov, A. Saharian, P.J. Silva, S. Zerbini, ...
On Einstein’s Cosmological Constant

Our universe seems to be spatially flat and to possess a non-vanishing cosmological constant

- For cosmologists and general relativists: *a great mistake* (Einstein)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = - \left(\frac{8\pi G}{c^4} \right) T_{\mu\nu} + \lambda g_{\mu\nu} \]

- For elementary particle physicists: *a great embarrassment* no way to get rid off (Coleman, Weinberg, Polchinski)

- The cc Λ is indeed a peculiar quantity

 - has to do with cosmology Einstein’s eqs., FRW universe
 - has to do with the local structure of elementary particle physics stress-energy density μ of the vacuum

\[L_{cc} = \int d^4 x \sqrt{-g} \mu^4 = \frac{1}{8\pi G} \int d^4 x \sqrt{-g} \lambda \]

In other words: two contributions on the same footing (Zel’dovich, 68)

\[\frac{\Lambda c^2}{8\pi G} + \frac{1}{\text{Vol}} \frac{\hbar c}{2} \sum_i \omega_i \]
Einstein Equations (1915-17): \[G_{\mu\nu} - \lambda g_{\mu\nu} = -(8\pi G/c^4)T_{\mu\nu} \]

Geometry = Energy-Matter

\(G_{\mu\nu} \) linear combination of the metric \(g_{\mu\nu} \) and 1st & 2nd derivatives

\(T_{\mu\nu} \) energy-momentum tensor

Schwarzschild solution (1916)

\[
\begin{align*}
 ds^2 &= \left(1 - \frac{2MG}{r}\right)dt^2 - \left(1 - \frac{2MG}{r}\right)^{-1}dr^2 - r^2d\theta^2 - r^2\sin^2\theta d\phi^2
\end{align*}
\]

Friedmann-Lemaître-Robertson-Walker (1935-36) sol (A. Friedmann 1922)

\[
\begin{align*}
 ds^2 &= dt^2 - a^2(t)\left(\frac{dr^2}{1-kr^2} + r^2d\theta^2 + r^2\sin^2\theta d\phi^2\right)
\end{align*}
\]

gen fam: homog + isotrop, \(k \) par \(\pm 1, 0 \)

Hubble ea 1923-29, Keeler Slipher Campbell 1918

One field eq looks like Newtonian eq for the gravit pot: \(\nabla^2 \phi = 4\pi G (\rho + 3p/c^2) \)

density & pressure contribute to the gravit pot \(\lambda = 8\pi G\rho_{vac}, \ p_{vac} = -\rho_{vac} c^2 \)

From the FRW metric and Einstein Eqs, an “equation of motion” of the universe

\[
H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho + \frac{\lambda}{3} - \frac{k}{a^2}
\]
From GR to Cosmology

With the definitions:

$$\Omega_m \equiv \frac{8\pi G}{3H^2}\rho_m, \quad \Omega_\lambda \equiv \frac{\lambda}{3H^2}, \quad \Omega_k \equiv -\frac{k}{H^2}$$

The equation of motion becomes

$$\left(\frac{da}{dt}\right)^2 = H_0^2 \left[\Omega_m^{(0)} \frac{a}{a} + a^2 \Omega_\lambda^{(0)} + \Omega_k^{(0)} \right]$$

(the superscript (o) represents quantities measured at the present time)

In other terms, Friedmann equation in Cosmology:

$$\frac{\dot{a}^2}{a^2} = H_0^2 \left[\Omega_R \left(\frac{a_0}{a}\right)^4 + \Omega_{NR} \left(\frac{a_0}{a}\right)^3 + \Omega_k \left(\frac{a_0}{a}\right)^2 + \Omega_\lambda \right]$$

- \(\Omega_R\) relativistic matter (\(p_R = \frac{1}{3}\rho_R; \ \rho_R \propto a^{-4}\))
- \(\Omega_{NR}\) nonrelativistic matter (\(p_{NR} = 0; \ \rho_{NR} \propto a^{-3}\))
- \(\Omega_\lambda\) cosmological constant (\(p_\lambda = -\rho_\lambda; \ \rho_\lambda = \text{const}\))

\(\Omega = \Omega_R + \Omega_{NR} + \Omega_\lambda\) total energy density (cosmic triangle)
Zero point energy

QFT vacuum to vacuum transition: $\langle 0 | H | 0 \rangle$
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n a_n a_n^\dagger
\]
Zero point energy

QFT vacuum to vacuum transition: \[\langle 0 | H | 0 \rangle \]

Spectrum, normal ordering (harm oscil):

\[H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger \]

\[\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H = \frac{1}{2} \zeta_H^\mu (-1) \]
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H = \frac{1}{2} \zeta_H^\mu (-1)
\]

gives \(\infty \) physical meaning?
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \ \text{tr} \ H = \frac{1}{2} \ \zeta_H(-1)
\]

gives \(\infty \) physical meaning?

Regularization + Renormalization (cut-off, dim, \(\zeta \))
Zero point energy

QFT vacuum to vacuum transition: \[\langle 0 | H | 0 \rangle \]

Spectrum, normal ordering (harm oscill):

\[H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger \]

\[\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H = \frac{1}{2} \zeta_H^\mu (-1) \]

gives \(\infty \) physical meaning?

Regularization + Renormalization (cut-off, dim, \(\zeta \))

Even then: Has the final value real sense?
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$
2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over
4. M closed n-dim manifold
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$

2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold

(a) The zeta function is defined as:

$$\zeta_A(s) = \text{tr} \ A^{-s} = \sum_j \lambda_j^{-s}, \quad \text{Re} \ s > \frac{n}{m} := s_0$$

$\{\lambda_j\}$ ordered spect of A, $s_0 = \dim M / \text{ord} A$ abscissa of converg of $\zeta_A(s)$
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$

2. A acts on the space of smooth sections of E, n-dim vector bundle over M

3. M closed n-dim manifold

(a) The zeta function is defined as:
$$\zeta_A(s) = \text{tr } A^{-s} = \sum_j \lambda_j^{-s}, \quad \text{Re } s > \frac{n}{m} := s_0$$

$\{\lambda_j\}$ ordered spec of A, $s_0 = \dim M/\text{ord } A$ abscissa of converg of $\zeta_A(s)$

(b) $\zeta_A(s)$ has a meromorphic continuation to the whole complex plane \mathbb{C} (regular at $s = 0$), provided the principal symbol of A, $a_m(x, \xi)$, admits a spectral cut: $L_\theta = \{\lambda \in \mathbb{C}; \text{Arg } \lambda = \theta, \theta_1 < \theta < \theta_2\}$,

$\text{Spec } A \cap L_\theta = \emptyset$

(the Agmon-Nirenberg condition)
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$
2. A acts on the space of smooth sections of E, n-dim vector bundle over M
3. M closed n-dim manifold

(a) The zeta function is defined as:
$$\zeta_A(s) = \text{tr} A^{-s} = \sum_j \lambda_j^{-s}, \quad \text{Re } s > \frac{n}{m} := s_0$$
where $\{\lambda_j\}$ ordered spectrum of A, $s_0 = \dim M/\text{ord } A$ is the abscissa of convergence of $\zeta_A(s)$

(b) $\zeta_A(s)$ has a meromorphic continuation to the whole complex plane \mathbb{C} (regular at $s = 0$), provided the principal symbol of A, $a_m(x, \xi)$, admits a spectral cut:
$$L_\theta = \{\lambda \in \mathbb{C}; \Arg \lambda = \theta, \theta_1 < \theta < \theta_2\}, \quad \text{Spec } A \cap L_\theta = \emptyset$$
(the Agmon-Nirenberg condition)

(c) The definition of $\zeta_A(s)$ depends on the position of the cut L_θ
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$

2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold

(a) The zeta function is defined as:

$$\zeta_A(s) = \text{tr } A^{-s} = \sum_j \lambda_j^{-s}, \quad \text{Re } s > \frac{n}{m} := s_0$$

$\{\lambda_j\}$ ordered spect of A, $s_0 = \dim M/\text{ord } A$ abscissa of converg of $\zeta_A(s)$

(b) $\zeta_A(s)$ has a meromorphic continuation to the whole complex plane \mathbb{C} (regular at $s = 0$), provided the principal symbol of A, $a_m(x, \xi)$, admits a spectral cut: $L_\theta = \{\lambda \in \mathbb{C}; \text{Arg } \lambda = \theta, \theta_1 < \theta < \theta_2\}$, $\text{Spec } A \cap L_\theta = \emptyset$ (the Agmon-Nirenberg condition)

(c) The definition of $\zeta_A(s)$ depends on the position of the cut L_θ

(d) The only possible singularities of $\zeta_A(s)$ are poles at

$$s_j = (n - j)/m, \quad j = 0, 1, 2, \ldots, n - 1, n + 1, \ldots$$
Definition of Determinant

\[H \] \[\Psi \] DO operator \{ \varphi_i, \lambda_i \} spectral decomposition
Definition of Determinant

\[H \text{ DO operator } \{\varphi_i, \lambda_i\} \text{ spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \]

\[\ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]
Definition of Determinant

\[H \Psi \text{ DO operator} \{ \varphi_i, \lambda_i \} \text{ spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \]

\[\ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]

Riemann zeta func: \(\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \ Re \ s > 1 \) (\& analytic cont)

Definition: zeta function of \(H \)

\[\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr} \ H^{-s} \]

As Mellin transform: \(\zeta_H(s) = \frac{1}{\Gamma(s)} \int_0^\infty dt \ t^{s-1} \text{tr} \ e^{-tH}, \ Re s > s_0 \)

Derivative: \(\zeta'_H(0) = -\sum_{i \in I} \ln \lambda_i \)
Definition of Determinant

\[H \psi \text{DO operator} \{ \varphi_i, \lambda_i \} \text{ spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \text{ ?!} \]

\[\ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]

Riemann zeta func: \[\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \text{ Re } s > 1 \] (& analytic cont)

Definition: zeta function of \(H \) \[\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr } H^{-s} \]

As Mellin transform: \[\zeta_H(s) = \frac{1}{\Gamma(s)} \int_0^\infty dt \ t^{s-1} \text{tr } e^{-tH}, \text{ Re } s > s_0 \]

Derivative: \[\zeta'_H(0) = -\sum_{i \in I} \ln \lambda_i \]

Determinant: Ray & Singer, '67 \[\text{det}_\zeta H = \exp \left[-\zeta'_H(0) \right] \]
Definition of Determinant

\[H \text{ DO operator} \{ \varphi_i, \lambda_i \} \text{ spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \text{ ?!} \]

\[\ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]

Riemann zeta func: \[\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \ Re s > 1 \text{ (}& \text{analytic cont)} \]

Definition: zeta function of \(H \)
\[\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr } H^{-s} \]

As Mellin transform:
\[\zeta_H(s) = \frac{1}{\Gamma(s)} \int_0^\infty dt \ t^{s-1} \text{tr } e^{-tH}, \text{ Re } s > s_0 \]

Derivative:
\[\zeta'_H(0) = -\sum_{i \in I} \ln \lambda_i \]

Determinant: Ray & Singer, ’67
\[\det H = \exp [-\zeta'_H(0)] \]

Weierstrass def: subtract leading behavior of \(\lambda_i \) in \(i \), as \(i \to \infty \), until series \(\sum_{i \in I} \ln \lambda_i \) converges \[\implies \text{non-local counterterms} \]
Definition of Determinant

\[H \psi \text{DO operator} \{\varphi_i, \lambda_i\} \text{ spectral decomposition} \]

\[
\prod_{i \in I} \lambda_i \quad \ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i
\]

Riemann zeta func:
\[
\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad \text{Re} \, s > 1 \quad (& \text{analytic cont})
\]

Definition: zeta function of \(H \)
\[
\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr} \, H^{-s}
\]

As Mellin transform:
\[
\zeta_H(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} dt \, t^{s-1} \text{tr} \, e^{-tH}, \quad \text{Re} \, s > s_0
\]

Derivative:
\[
\zeta'_H(0) = -\sum_{i \in I} \ln \lambda_i
\]

Determinant: Ray & Singer, '67
\[
\det \zeta H = \exp \left[-\zeta'_H(0)\right]
\]

Weierstrass def: subtract leading behavior of \(\lambda_i \) in \(i \), as \(i \to \infty \), until series \(\sum_{i \in I} \ln \lambda_i \) converges \(\implies \) non-local counterterms !!

C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,...
Properties

The definition of the determinant $\det_\zeta A$ only depends on the homotopy class of the cut.
Properties

- The definition of the determinant $\det_\zeta A$ only depends on the homotopy class of the cut.

- A zeta function (and corresponding determinant) with the same meromorphic structure in the complex s-plane and extending the ordinary definition to operators of complex order $m \in \mathbb{C} \setminus \mathbb{Z}$ (they do not admit spectral cuts), has been obtained [Kontsevich and Vishik].
Properties

- The definition of the determinant $\det_\zeta A$ only depends on the homotopy class of the cut.

- A zeta function (and corresponding determinant) with the same meromophic structure in the complex s-plane and extending the ordinary definition to operators of complex order $m \in \mathbb{C}\setminus\mathbb{Z}$ (they do not admit spectral cuts), has been obtained [Kontsevich and Vishik].

- Asymptotic expansion for the heat kernel:
Properties

The definition of the determinant \(\text{det}_{\zeta} A \) only depends on the homotopy class of the cut.

A zeta function (and corresponding determinant) with the same meromorphic structure in the complex \(s \)-plane and extending the ordinary definition to operators of complex order \(m \in \mathbb{C} \setminus \mathbb{Z} \) (they do not admit spectral cuts), has been obtained \[\text{Kontsevich and Vishik}\]

Asymptotic expansion for the heat kernel:

\[
\text{tr} e^{-tA} = \sum'_{\lambda \in \text{Spec } A} e^{-t\lambda} \\
\sim \alpha_n(A) + \sum_{n \neq j \geq 0} \alpha_j(A) t^{-s_j} + \sum_{k \geq 1} \beta_k(A) t^k \ln t, \quad t \downarrow 0
\]

\[
\alpha_n(A) = \zeta_A(0), \quad \alpha_j(A) = \Gamma(s_j) \text{Res}_{s=s_j} \zeta_A(s), \quad s_j \notin -\mathbb{N}
\]

\[
\alpha_j(A) = \frac{(-1)^k}{k!} \left[\text{PP} \zeta_A(-k) + \psi(k + 1) \text{Res}_{s=-k} \zeta_A(s) \right],
\]

\[
\beta_k(A) = \frac{(-1)^{k+1}}{k!} \text{Res}_{s=-k} \zeta_A(s), \quad k \in \mathbb{N} \setminus \{0\}
\]

\[
\text{PP } \phi := \lim_{s \to p} \left[\phi(s) - \frac{\text{Res}_{s=p} \phi(s)}{s-p} \right]
\]
The Chowla-Selberg Expansion Formula: Basics

- **Jacobi’s identity** for the θ-function

$$\theta_3(z, \tau) := 1 + 2 \sum_{n=1}^{\infty} q^{n^2} \cos(2nz), \quad q := e^{i\pi \tau}, \quad \tau \in \mathbb{C}$$

$$\theta_3(z, \tau) = \frac{1}{\sqrt{-i\tau}} e^{z^2/i\pi \tau} \theta_3 \left(\frac{z}{\tau} \mid -\frac{1}{\tau} \right)$$

equivalently:

$$\sum_{n=-\infty}^{\infty} e^{-(n+z)^2 t} = \sqrt{\frac{\pi}{t}} \sum_{n=0}^{\infty} e^{-\frac{\pi^2 n^2}{t}} \cos(2\pi nz), \quad z, t \in \mathbb{C}, \quad \text{Re} t > 0$$
The Chowla-Selberg Expansion Formula: Basics

- **Jacobi’s identity** for the θ–function

 $$\theta_3(z, \tau) := 1 + 2 \sum_{n=1}^{\infty} q^n \cos(2nz), \quad q := e^{i\pi\tau}, \tau \in \mathbb{C}$$

 $$\theta_3(z, \tau) = \frac{1}{\sqrt{-i\tau}} e^{z^2/i\pi\tau} \theta_3 \left(\frac{z}{\tau} | -\frac{1}{\tau} \right)$$

 equivalently:

 $$\sum_{n=-\infty}^{\infty} e^{-(n+z)^2t} = \sqrt{\frac{\pi}{t}} \sum_{n=0}^{\infty} e^{-\frac{\pi^2 n^2}{t}} \cos(2\pi nz), \quad z, t \in \mathbb{C}, \text{ Re} t > 0$$

- **Higher dimensions:** Poisson summ formula (Riemann)

 $$\sum_{\vec{n} \in \mathbb{Z}^p} f(\vec{n}) = \sum_{\vec{m} \in \mathbb{Z}^p} \tilde{f}(\vec{m})$$

 \tilde{f} Fourier transform

 [Gelbart + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]
The Chowla-Selberg Expansion Formula: Basics

- **Jacobi’s identity** for the θ-function

$$\theta_3(z, \tau) := 1 + 2 \sum_{n=1}^{\infty} q^{n^2} \cos(2n z), \quad q := e^{i\pi \tau}, \tau \in \mathbb{C}$$

$$\theta_3(z, \tau) = \frac{1}{\sqrt{-i\tau}} e^{z^2/i\pi \tau} \theta_3\left(\frac{z}{\tau}\left|\frac{-1}{\tau}\right)\right.$$ equivalently:

$$\sum_{n=-\infty}^{\infty} e^{-(n+z)^2/t} = \sqrt{\frac{\pi}{t}} \sum_{n=0}^{\infty} e^{-\pi^2 n^2/t} \cos(2\pi n z), \quad z, t \in \mathbb{C}, \text{ Re} t > 0$$

- Higher dimensions: **Poisson summ formula** (Riemann)

$$\sum_{\vec{n} \in \mathbb{Z}^p} f(\vec{n}) = \sum_{\vec{m} \in \mathbb{Z}^p} \tilde{f}(\vec{m})$$

\[\tilde{f}\] Fourier transform

[Gelbart + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]

- Truncated sums \rightarrow asymptotic series
Extended CS Formulas (ECS)

Consider the zeta function \((\text{Re} s > p/2, A > 0, \text{Re} q > 0)\)

\[
\zeta_{A, \vec{c}, q}(s) = \sum_{\vec{n} \in \mathbb{Z}^p} \prime \left[\frac{1}{2} (\vec{n} + \vec{c})^T A (\vec{n} + \vec{c}) + q \right]^{-s} = \sum_{\vec{n} \in \mathbb{Z}^p} \prime \left[Q (\vec{n} + \vec{c}) + q \right]^{-s}
\]

prime: point \(\vec{n} = \vec{0}\) to be excluded from the sum

(inescapable condition when \(c_1 = \cdots = c_p = q = 0\))

\[
Q (\vec{n} + \vec{c}) + q = Q(\vec{n}) + L(\vec{n}) + \bar{q}
\]
Extended CS Formulas (ECS)

Consider the zeta function \((\text{Re} s > p/2, A > 0, \text{Re} q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \sum_{\vec{n} \in \mathbb{Z}^p}^{'} \left[\frac{1}{2} (\vec{n} + \vec{c})^T A (\vec{n} + \vec{c}) + q \right]^{-s} = \sum_{\vec{n} \in \mathbb{Z}^p}^{'} [Q (\vec{n} + \vec{c}) + q]^{-s}
\]

prime: point \(\vec{n} = \vec{0}\) to be excluded from the sum

(inescapable condition when \(c_1 = \cdots = c_p = q = 0\))

\[Q (\vec{n} + \vec{c}) + q = Q(\vec{n}) + L(\vec{n}) + \vec{q}\]

Case \(q \neq 0 (\text{Re} q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \frac{(2\pi)^{p/2} q^{p/2-s}}{\sqrt{\text{det} A}} \frac{\Gamma(s - p/2)}{\Gamma(s)} + \frac{2^{s/2+p/4+2} \pi^s q^{-s/2+p/4}}{\sqrt{\text{det} A} \Gamma(s)}
\]

\[
\times \sum_{\vec{m} \in \mathbb{Z}_{1/2}^p}^{'} \cos(2\pi \vec{m} \cdot \vec{c}) (\vec{m}^T A^{-1} \vec{m})^{s/2-p/4} K_{p/2-s} \left(2\pi \sqrt{2q} \vec{m}^T A^{-1} \vec{m}\right)
\]

[1] ECS1
Consider the zeta function \((\text{Re} s > p/2, A > 0, \text{Re} q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \sum_{\vec{n} \in \mathbb{Z}^p} \left[\frac{1}{2} \left(\vec{n} + \vec{c} \right)^T A (\vec{n} + \vec{c}) + q \right]^{-s} = \sum_{\vec{n} \in \mathbb{Z}^p} \left[Q (\vec{n} + \vec{c}) + q \right]^{-s}
\]

prime: point \(\vec{n} = \vec{0}\) to be excluded from the sum
(inescapable condition when \(c_1 = \cdots = c_p = q = 0\))

\[Q (\vec{n} + \vec{c}) + q = Q(\vec{n}) + L(\vec{n}) + \bar{q}\]

Case \(q \neq 0 (\text{Re} q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \frac{(2\pi)^{p/2} q^{p/2-s}}{\sqrt{\det A}} \frac{\Gamma(s - p/2)}{\Gamma(s)} + \frac{2^{p/4} \pi^s q^{-s/2+p/4}}{\sqrt{\det A} \Gamma(s)}
\]

\[
\times \sum_{\vec{m} \in \mathbb{Z}_{1/2}^p} \cos(2\pi \vec{m} \cdot \vec{c}) \left(\vec{m}^T A^{-1} \vec{m} \right)^{s/2-p/4} K_{p/2-s} \left(2\pi \sqrt{2q \vec{m}^T A^{-1} \vec{m}} \right)
\]

Pole: \(s = p/2\)

Residue:

\[
\text{Res}_{s=p/2} \zeta_{A,\vec{c},q}(s) = \frac{(2\pi)^{p/2}}{\Gamma(p/2)} (\det A)^{-1/2}
\]
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane.
• Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane

• Exhibits singularities (simple poles) of the meromorphic continuation — with the corresponding residua — explicitly
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua—explicitly

Only condition on matrix A: corresponds to (non negative) quadratic form, Q. Vector \vec{c} arbitrary, while q is (to start) a non-neg constant
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane.

Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua—explicitly.

Only condition on matrix A: corresponds to (non negative) quadratic form, Q. Vector \vec{c} arbitrary, while q is (to start) a non-neg constant.

K_ν modified Bessel function of the second kind and the subindex $1/2$ in $\mathbb{Z}^{p}_{1/2}$ means that only half of the vectors $\vec{m} \in \mathbb{Z}^p$ participate in the sum. E.g., if we take an $\vec{m} \in \mathbb{Z}^p$ we must then exclude $-\vec{m}$ [simple criterion: one may select those vectors in $\mathbb{Z}^p \setminus \{\vec{0}\}$ whose first non-zero component is positive].
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane.

Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua—explicitly.

Only condition on matrix A: corresponds to (non negative) quadratic form, Q. Vector \vec{c} arbitrary, while q is (to start) a non-neg constant.

K_ν modified Bessel function of the second kind and the subindex $1/2$ in $\mathbb{Z}^p_{1/2}$ means that only half of the vectors $\vec{m} \in \mathbb{Z}^p$ participate in the sum. E.g., if we take an $\vec{m} \in \mathbb{Z}^p$ we must then exclude $-\vec{m}$

[simple criterion: one may select those vectors in $\mathbb{Z}^p\setminus\{\vec{0}\}$ whose first non-zero component is positive]

Case $c_1 = \cdots = c_p = q = 0$ [true extens of CS, diag subcase]

$$\zeta_{A_p}(s) = \frac{2^{1+s}}{\Gamma(s)} \sum_{j=0}^{p-1} (\det A_j)^{-1/2} \left[\pi^{j/2} a_j^{j/2-s} \Gamma \left(s - \frac{j}{2} \right) \zeta_R(2s-j) +
ight.$$

$$4\pi^s a_j^{-\frac{j}{2}} \sum_{n=1}^{\infty} \sum_{\vec{m}_j \in \mathbb{Z}^j} n^{j/2-s} \left(\vec{m}_j^t A_j^{-1} \vec{m}_j \right)^{s/2-j/4} K_{j/2-s} \left(2\pi n \sqrt{a_p-j \vec{m}_j^t A_j^{-1} \vec{m}_j} \right)$$

[EC3d]
The Casimir Effect
The Casimir Effect

BC e.g. periodic

Casimir Effect

BC

vacuum

Φ
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields

vacuum

Casimir Effect
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:

- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation

Van der Waals, Lifschitz theory
The Casimir Effect

- BC e.g. periodic
- all kind of fields
- curvature or topology

Universal process:
- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation

Van der Waals, Lifschitz theory

- Dynamical CE
- Lateral CE
- Extract energy from vacuum
- CE and the cosmological constant
The Dynamical Casimir Effect

The Dynamical Casimir Effect

- Moving mirrors modify structure of quantum vacuum
- Creation and annihilation of photons; once mirrors return to rest, some produced photons may still remain: flux of radiated particles
The Dynamical Casimir Effect

- Moving mirrors modify structure of quantum vacuum
- Creation and annihilation of photons; once mirrors return to rest, some produced photons may still remain: flux of radiated particles
- For a single, perfectly reflecting mirror:
 # photons & energy diverge while mirror moves
The Dynamical Casimir Effect

- Moving mirrors modify structure of quantum vacuum

- Creation and annihilation of photons; once mirrors return to rest, some produced photons may still remain: flux of radiated particles

- For a single, perfectly reflecting mirror:
 # photons & energy diverge while mirror moves

- Several renormalization prescriptions have been used in order to obtain a well-defined energy
The Dynamical Casimir Effect

Moving mirrors modify structure of quantum vacuum

Creation and annihilation of photons; once mirrors return to rest, some produced photons may still remain: flux of radiated particles

For a single, perfectly reflecting mirror:

photons & energy diverge while mirror moves

Several renormalization prescriptions have been used in order to obtain a well-defined energy

Problem: for some trajectories this finite energy is not a positive quantity and cannot be identified with the energy of the photons
The Dynamical Casimir Effect

- Moving mirrors modify structure of quantum vacuum
- Creation and annihilation of photons; once mirrors return to rest, some produced photons may still remain: flux of radiated particles
- For a single, perfectly reflecting mirror:
 # photons & energy diverge while mirror moves
- Several renormalization prescriptions have been used in order to obtain a well-defined energy
- Problem: for some trajectories this finite energy is not a positive quantity and cannot be identified with the energy of the photons

Moore; Razavy, Terning; Johnston, Sarkar; Dodonov et al; Plunien et al; Barton, Eberlein, Calogeracos; Ford, Vilenkin; Jaeckel, Reynaud, Lambrechts; Brevik, Milton et al; Dalvit, Maia-Neto et al; Law; Parentani, ...
A CONSISTENT APPROACH:

J. Haro & E.E., PRL 97 (2006); arXiv:0705.0597
A CONSISTENT APPROACH:
J. Haro & E.E., PRL 97 (2006); arXiv:0705.0597

- Partially transmitting mirrors, which become transparent to very high frequencies (analytic matrix)
- Proper use of a Hamiltonian method & corresponding renormalization
A CONSISTENT APPROACH:
J. Haro & E.E., PRL 97 (2006); arXiv:0705.0597

- Partially transmitting mirrors, which become transparent to very high frequencies (*analytic* matrix)
- Proper use of a *Hamiltonian method* & corresponding *renormalization*
- Proved both: # of created particles is *finite* & their energy is always positive, for the whole trajectory during the mirrors’ displacement
A Consistent Approach:

J. Haro & E.E., PRL 97 (2006); arXiv:0705.0597

- Partially transmitting mirrors, which become transparent to very high frequencies (analytic matrix)

- Proper use of a Hamiltonian method & corresponding renormalization

- Proved both: # of created particles is finite & their energy is always positive, for the whole trajectory during the mirrors’ displacement

- The radiation-reaction force acting on the mirrors owing to emission-absorption of particles is related with the field’s energy through the energy conservation law: energy of the field at any t equals (with opposite sign) the work performed by the reaction force up to time t
A Consistent Approach:
J. Haro & E.E., PRL 97 (2006); arXiv:0705.0597

- Partially transmitting mirrors, which become transparent to very high frequencies (analytic matrix)

- Proper use of a Hamiltonian method & corresponding renormalization

- Proved both: # of created particles is finite & their energy is always positive, for the whole trajectory during the mirrors’ displacement

- The radiation-reaction force acting on the mirrors owing to emission-absorption of particles is related with the field’s energy through the energy conservation law: energy of the field at any t equals (with opposite sign) the work performed by the reaction force up to time t

- Such force is split into two parts: a dissipative force whose work equals minus the energy of the particles that remain & a reactive force vanishing when the mirrors return to rest
A CONSISTENT APPROACH:
J. Haro & E.E., PRL 97 (2006); arXiv:0705.0597

- Partially transmitting mirrors, which become transparent to very high frequencies (analytic matrix)
- Proper use of a Hamiltonian method & corresponding renormalization
- Proved both: # of created particles is finite & their energy is always positive, for the whole trajectory during the mirrors’ displacement
- The radiation-reaction force acting on the mirrors owing to emission-absorption of particles is related with the field’s energy through the energy conservation law: energy of the field at any t equals (with opposite sign) the work performed by the reaction force up to time t
- Such force is split into two parts: a dissipative force whose work equals minus the energy of the particles that remain & a reactive force vanishing when the mirrors return to rest
- The dissipative part we obtain agrees with the other methods. But those have problems with the reactive part, which in general yields a non-positive energy

⇒ EXPERIMENT
SOME DETAILS OF THE METHOD

Hamiltonian method for neutral Klein-Gordon field in a cavity Ω_t, with boundaries moving at a certain speed $v << c$, $\epsilon = v/c$

(of order 10^{-8} in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)
SOME DETAILS OF THE METHOD

- Hamiltonian method for neutral Klein-Gordon field in a cavity Ω_t, with boundaries moving at a certain speed $v << c, \varepsilon = v/c$ (of order 10^{-8} in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)

- Assume boundary at rest for time $t \leq 0$ and returns to its initial position at time T
Some details of the method

- **Hamiltonian method** for neutral Klein-Gordon field in a cavity Ω_t, with boundaries moving at a certain speed $v << c$, $\epsilon = v/c$ (of order 10^{-8} in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)

- Assume boundary at rest for time $t \leq 0$ and returns to its initial position at time T

- Hamiltonian density conveniently obtained using the method in Johnston, Sarkar, JPA 29 (1996) 1741
SOME DETAILS OF THE METHOD

- Hamiltonian method for neutral Klein-Gordon field in a cavity Ω_t, with boundaries moving at a certain speed $v << c$, $\epsilon = v/c$
 (of order 10^{-8} in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)

- Assume boundary at rest for time $t \leq 0$ and returns to its initial position at time T

- Hamiltonian density conveniently obtained using the method in Johnston, Sarkar, JPA 29 (1996) 1741

- Lagrangian density of the field

 $$\mathcal{L}(t, x) = \frac{1}{2} \left[(\partial_t \phi)^2 - |\nabla_x \phi|^2 \right], \quad \forall x \in \Omega_t \subset \mathbb{R}^n, \quad \forall t \in \mathbb{R}$$
Some details of the method

- Hamiltonian method for neutral Klein-Gordon field in a cavity Ω_t, with boundaries moving at a certain speed $v << c$, $\epsilon = v/c$ (of order 10^{-8} in Kim, Brownell, Onofrio, PRL 96 (2006) 200402)

- Assume boundary at rest for time $t \leq 0$ and returns to its initial position at time T

- Hamiltonian density conveniently obtained using the method in Johnston, Sarkar, JPA 29 (1996) 1741

- Lagrangian density of the field

$$\mathcal{L}(t, x) = \frac{1}{2} \left[(\partial_t \phi)^2 - |\nabla_x \phi|^2 \right], \quad \forall x \in \Omega_t \subset \mathbb{R}^n, \forall t \in \mathbb{R}$$

- Hamiltonian. Transform moving boundary into fixed one by (non-conformal) change of coordinates

$$\mathcal{R} : (\bar{t}, y) \rightarrow (t(\bar{t}, y), x(\bar{t}, y)) = (\bar{t}, \mathbf{R}(\bar{t}, y))$$

transform Ω_t into a fixed domain $\tilde{\Omega}$

$$\widetilde{\Omega} : (t(\bar{t}, y), x(\bar{t}, y)) = \mathcal{R}(\bar{t}, y) = (\bar{t}, \mathbf{R}(\bar{t}, y))$$

(with \bar{t} the new time)
CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR
CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR

Seminal Davis-Fulling model [PRSL A348 (1976) 393] renormalized energy negative while the mirror moves: cannot be considered as the energy of the produced particles at time t [cf. paragraph after Eq. (4.5)]
CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR

Seminal Davis-Fulling model [PRSL A348 (1976) 393] renormalized energy negative while the mirror moves: cannot be considered as the energy of the produced particles at time t [cf. paragraph after Eq. (4.5)]

Our interpretation: a perfectly reflecting mirror is non-physical. Consider, instead, a partially transmitting mirror, transparent to high frequencies (math. implementation of a physical plate).
CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR

Seminal Davis-Fulling model [PRSL A348 (1976) 393] renormalized energy negative while the mirror moves: cannot be considered as the energy of the produced particles at time t [cf. paragraph after Eq. (4.5)]

Our interpretation: a perfectly reflecting mirror is non-physical.

Consider, instead, a partially transmitting mirror, transparent to high frequencies (math. implementation of a physical plate).

Trajectory $(t, \epsilon g(t))$. When mirror at rest, scattering described by matrix $S(\omega) = \begin{pmatrix} s(\omega) & r(\omega) e^{-2i\omega L} \\ r(\omega) e^{2i\omega L} & s(\omega) \end{pmatrix}$

$\Rightarrow S$ matrix is taken to be: $(x = L$ position of the mirror)
CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR

Seminal Davis-Fulling model [PRSL A348 (1976) 393]
renormalized energy negative while the mirror moves:
cannot be considered as the energy of the produced particles at time \(t \)
[cf. paragraph after Eq. (4.5)]
Our interpretation: a perfectly reflecting mirror is non-physical.
Consider, instead, a partially transmitting mirror, transparent to high
frequencies (math. implementation of a physical plate).
Trajectory \((t, \epsilon g(t))\). When mirror at rest, scattering described by matrix
\[
S(\omega) = \begin{pmatrix}
 s(\omega) & r(\omega) e^{-2i\omega L} \\
 r(\omega) e^{2i\omega L} & s(\omega)
\end{pmatrix}
\]
\(\Rightarrow S\) matrix is taken to be: \((x = L \text{ position of the mirror})\)
\(\rightarrow\) Real in the temporal domain: \(S(-\omega) = S^*(\omega)\)
\(\rightarrow\) Causal: \(S(\omega)\) is analytic for \(\text{Im} (\omega) > 0\) [S Reynaud]
\(\rightarrow\) Unitary: \(S(\omega)S^\dagger(\omega) = \text{Id}\)
\(\rightarrow\) The identity at high frequencies: \(S(\omega) \to \text{Id}, \text{when} |\omega| \to \infty\)
\(s(\omega)\) and \(r(\omega)\) meromorphic (cut-off) functions
(material’s permittivity and resistivity)
RESULTS ARE REWARDING:
In our Hamiltonian approach

\[\langle \hat{F}_{Ha}(t) \rangle = -\frac{\epsilon}{2\pi^2} \int_0^\infty \int_0^\infty \frac{d\omega d\omega' \omega \omega'}{\omega + \omega'} \text{Re} \left[e^{-i(\omega + \omega')t} \hat{\theta}_t(\omega + \omega') \right] \]

\[\times \left[|r(\omega) + r^*(\omega')|^2 + |s(\omega) - s^*(\omega')|^2 \right] + \mathcal{O}(\epsilon^2) \]

Note this integral diverges for a perfect mirror \((r \equiv -1, s \equiv 0, \text{ideal case})\), but nicely converges for our partially transmitting (physical) one where \(r(\omega) \to 0, s(\omega) \to 1\), as \(\omega \to \infty\).
RESULTS ARE REWARDING:

In our Hamiltonian approach

\[
\langle \hat{F}_{Ha}(t) \rangle = -\frac{\varepsilon}{2\pi^2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{d\omega d\omega'}{\omega + \omega'} \Re \left[e^{-i(\omega + \omega')t} \hat{g}\dot{\theta}_t(\omega + \omega') \right] \\
\times \left[|r(\omega) + r^*(\omega')|^2 + |s(\omega) - s^*(\omega')|^2 \right] + \mathcal{O}(\varepsilon^2)
\]

Note this integral **diverges** for a perfect mirror \((r \equiv -1, s \equiv 0, \text{ideal case})\), but **nicely converges** for our partially transmitting (physical) one where \(r(\omega) \to 0, s(\omega) \to 1\), as \(\omega \to \infty\)

Energy conservation is fulfilled: the dynamical energy at any time \(t\) equals, with the opposite sign, the work performed by the reaction force up to that time \(t\)

\[
\langle \hat{E}(t) \rangle = -\varepsilon \int_{0}^{t} \langle \hat{F}_{Ha}(\tau) \rangle \hat{g}(\tau) d\tau
\]
RESULTS ARE REWARDING:

In our Hamiltonian approach

\[
\langle \hat{F}_{Ha}(t) \rangle = -\frac{\epsilon}{2\pi^2} \int_0^\infty \int_0^\infty \frac{d\omega d\omega'}{\omega + \omega'} \text{Re} \left[e^{-i(\omega+\omega')t} \hat{g} \theta_t(\omega + \omega') \right] \times \left[|r(\omega) + r^*(\omega')|^2 + |s(\omega) - s^*(\omega')|^2 \right] + \mathcal{O}(\epsilon^2)
\]

Note this integral **diverges** for a perfect mirror \((r \equiv -1, s \equiv 0, \text{ideal case})\), but **nicely converges** for our partially transmitting (physical) one where \(r(\omega) \to 0, s(\omega) \to 1\), as \(\omega \to \infty\)

Energy conservation is fulfilled: the dynamical energy at any time \(t\) equals, with the opposite sign, the work performed by the reaction force up to that time \(t\)

\[
\langle \hat{E}(t) \rangle = -\epsilon \int_0^t \langle \hat{F}_{Ha}(\tau) \rangle \dot{g}(\tau) d\tau
\]

\[\rightarrow\] Two mirrors; higher dimensions; fields of any kind
The main issue: energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor \[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]
Quantum Vacuum Fluct’s & the CC

The main issue: S.A. Fulling et. al., hep-th/070209v2

Energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations: [E Mottola]

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum
The main issue: energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor $\langle T_{\mu\nu} \rangle \equiv -\mathcal{E}g_{\mu\nu}$

Appears on the rhs of Einstein’s equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -8\pi G(\tilde{T}_{\mu\nu} - \mathcal{E}g_{\mu\nu})$$

It affects cosmology: $\tilde{T}_{\mu\nu}$ excitations above the vacuum

Equivalent to a cosmological constant $\Lambda = 8\pi G\mathcal{E}$
The main issue: energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor
\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations:
\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum

Equivalent to a cosmological constant \(\Lambda = 8\pi G \mathcal{E} \)

Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004
\[\Lambda = \left(2.14 \pm 0.13 \times 10^{-3} \text{ eV}\right)^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]
Quantum Vacuum Fluct’s & the CC

The main issue: S.A. Fulling et. al., hep-th/070209v2

energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum

Equivalent to a cosmological constant \(\Lambda = 8\pi G \mathcal{E} \)

Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

\[\Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]

Idea: zero point fluctuations can contribute to the cosmological constant Ya.B. Zeldovich ’68
CC PROBLEM

Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + \frac{m^2}{\hbar^2}, \quad k = \frac{2\pi}{\lambda} \]
CC PROBLEM

- Relativistic field: collection of harmonic oscill’s (scalar field)
 \[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

- Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresp’ng to QFT physics (e.g., Planck energy)
 \[\rho \sim \frac{\hbar k_{\text{Planck}}}{16\pi^2} \sim 10^{123} \rho_{\text{obs}} \]

kind of (thick!) aether R Caldwell, S Carroll but C Gómez, G Dvali
Relativistic field: collection of harmonic oscillators (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

Evaluating in a box and putting a cut-off at maximum \(k_{\text{max}} \) corresponding to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{\text{Planck}}^4}{16\pi^2} \sim 10^{123} \rho_{\text{obs}} \]

kind of (thick!) aether R Caldwell, S Carroll but C Gómez, G Dvali

Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]
CC Problem

- Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = 2\pi/\lambda \]

- Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corres’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]

kind of (thick!) aether \quad \text{R Caldwell, S Carroll} \quad \text{but} \quad \text{C Gómez, G Dvali}

- Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]

- Very difficult to solve and we do not address this question directly

[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]
CC Problem

- Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_{n} \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

- Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]

kind of (thick!) aether \quad R Caldwell, S Carroll \quad but \quad C Gómez, G Dvali

- Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]

- Very difficult to solve and we do not address this question directly

[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]

- What we do consider —with relative success in some different approaches— is the additional contribution to the cc coming from the non-trivial topology of space or from specific boundary conditions imposed on braneworld models:

\[\implies \text{kind of cosmological Casimir effect} \]
Cosmolog Imprint of the Casimir Eff’t?

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two $10^{-2}\,\text{mm}$ dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens
Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2}mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:
Cosmolog Imprint of the Casimir Eff’t?

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2} mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:

(a) small and large compactified scales
Cosmolog Imprint of the Casimir Eff’t?

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2}mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:

(a) small and large compactified scales
(b) dS & AdS worldbranes
Cosmolog Imprint of the Casimir Eff’t?

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

- L. Parker & A. Raval, VCDM, vacuum energy density
- C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2}mm dims, bulk vs brane Susy breaking scales
- T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:

- (a) small and large compactified scales
- (b) dS & AdS worldbranes
- (c) supergraviton theories (discret dims, deconstr)
The Braneworld Case

1. Braneworld may help to solve:
 - the hierarchy problem
 - the cosmological constant problem

2. Presumably, the bulk Casimir effect will play a role in the construction (radion stabilization) of braneworlds
 - Bulk Casimir effect (effective potential) for a conformal or massive scalar field
 - Bulk is a 5-dim AdS or dS space with 2/1 4-dim dS brane (our universe)
 - Consistent with observational data even for relatively large extra dimension

Previous work:
- flat space brane
- bulk conformal scalar field
- conclusion: no CE

We used zeta regularization at full power, with positive results!

EE, S Nojiri, SD Odintsov, S Ogushi, Phys Rev D67 (2003) 063515 Casimir effect in de Sitter and Anti-de Sitter braneworlds
EE, SD Odintsov, AA Saharian 0902.0717 Repulsive Casimir effect from extra dimensions and Robin BC: from branes to pistons
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account
- Casimir calculation: attractive force
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account

- Casimir calculation: attractive force

- Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC.
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account
- Casimir calculation: attractive force
- Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC
- Systematic calculation, for different fields, BCs, and dimensions
 J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account

Casimir calculation: attractive force

Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

Systematic calculation, for different fields, BCs, and dimensions
J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls

Possibly not relevant at lab scales, but very important for cosmological models
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account

Casimir calculation: attractive force

Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

Systematic calculation, for different fields, BCs, and dimensions
J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls

Possibly not relevant at lab scales, but very important for cosmological models

More general results: Kenneth, Klich, PRL 97, 160401 (2006) a mirror pair of dielectric bodies always attract each other
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^*\Theta(f) \)
E.g. ⋄ correlation inequality: $\langle f \Theta(f) \rangle > 0$

Θ reflection with respect to a 3-dim hyperplane in \mathbb{R}^4

the action of Θ on f is anti-unitary $\Theta(cf) = c^* \Theta(f)$

The existence of the reflection operator Θ is a consequence of unitarity only, and makes no assumptions about the discrete C, P, T symmetries
E.g. \exists \text{ correlation inequality: } \langle f\Theta(f) \rangle > 0

\begin{itemize}
\item \(\Theta\) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4\)
\item the action of \(\Theta\) on \(f\) is anti-unitary \(\Theta(cf) = c^*\Theta(f)\)
\end{itemize}

The existence of the reflection operator \(\Theta\) is a consequence of \textit{unitarity} only, and makes no assumptions about the discrete \(C, P, T\) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a \textit{mathematically singular} operation (which introduces divergent edge contributions)
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(R^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions)

Theorem does not apply for
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)
the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions)

Theorem does not apply for
- mirror probes in a Fermi sea (chemical-potential term), eg when electron-gas fluctuations become important
E.g. ∃ correlation inequality: ⟨fΘ(f)⟩ > 0

Θ reflection with respect to a 3-dim hyperplane in R^4

the action of $Θ$ on f is anti-unitary $Θ(cf) = c^*Θ(f)$

The existence of the reflection operator $Θ$ is a consequence of unitarity only, and makes no assumptions about the discrete C, P, T symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions)

Theorem does not apply for

- mirror probes in a Fermi sea (chemical-potential term), eg when electron-gas fluctuations become important
- periodic BCs for fermions
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions)

Theorem does not apply for

- mirror probes in a Fermi sea (chemical-potential term), eg when electron-gas fluctuations become important
- periodic BCs for fermions
- Robin BCs in general
Casimir eff in brworl’s w large extra dim

Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{D_1-1,1} \times \Sigma$, Σ compact internal space

Most general case: constants in the BCs different for the two plates. It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces.
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space

Most general case: constants in the BCs different for the two plates
It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces

Robin type BCs are an extension of Dirichlet and Neumann’s
\implies most suitable to describe physically realistic situations
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space

Most general case: constants in the BCs different for the two plates
It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces

Robin type BCs are an extension of Dirichlet and Neumann’s
\implies most suitable to describe physically realistic situations

Genuinely appear in: \rightarrow vacuum effects for a confined charged scalar field in external fields [Ambjørn ea 83],
\rightarrow spinor and gauge field theories,
\rightarrow quantum gravity and supergravity [Luckock ea 91]
Can be made conformally invariant, purely-Neumann conditions cannot
\implies needed for conformally invariant theories with BC, to preserve cf invar
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space

Most general case: constants in the BCs different for the two plates
It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces

Robin type BCs are an extension of Dirichlet and Neumann’s
\[\implies \text{most suitable to describe physically realistic situations} \]

Genuinely appear in: → vacuum effects for a confined charged scalar field in external fields [Ambjørn ea 83],
→ spinor and gauge field theories,
→ quantum gravity and supergravity [Luckock ea 91]
Can be made conformally invariant, purely-Neumann conditions cannot
\[\implies \text{needed for conformally invariant theories with BC, to preserve cf invar} \]

Quantum scalar field with Robin BCs on boundary of cavity violates Bekenstein’s entropy-to-energy bound near certain points in the space of the parameter defining the boundary condition [Solodukhin 01]
Robin BCs can model the finite penetration of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01] Casimir forces between the boundary planes of films [Schmidt ea 08]
Robin BCs can model the **finite penetration** of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01] Casimir forces between the **boundary planes** of films [Schmidt ea 08]

Naturally arise for scalar and fermion bulk fields in the **Randall-Sundrum model**
Robin BCs can model the finite penetration of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01]
Casimir forces between the boundary planes of films [Schmidt ea 08]

Naturally arise for scalar and fermion bulk fields in the Randall-Sundrum model.

For arbitrary internal space, interaction part of the Casimir energy given by

\[\Delta E_{[a_1,a_2]} = \frac{(4\pi)^{-D_1/2}}{\Gamma(D_1/2)} \sum_{\beta} \int_{m_{\beta}}^{\infty} dx \, x(x^2 - m_{\beta}^2)^{D_1/2-1} \]

\[\times \ln \left[1 - \frac{(\beta_1 x + 1)(\beta_2 x + 1)}{(\beta_1 x - 1)(\beta_2 x - 1)} e^{-2ax} \right] \quad (*) \]
Robin BCs can model the **finite penetration** of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01]

Casimir forces between the **boundary planes** of films [Schmidt ea 08]

Naturally arise for scalar and fermion bulk fields in the **Randall-Sundrum model**

For arbitrary internal space, interaction part of the Casimir energy given by

$$\Delta E_{[a_1,a_2]} = \frac{(4\pi)^{-D_1/2}}{\Gamma(D_1/2)} \sum_\beta \int_{m_\beta}^{\infty} dx \left(x^2 - m_\beta^2\right)^{D_1/2-1}$$

$$\times \ln \left[1 - \frac{(\beta_1 x + 1)(\beta_2 x + 1)}{(\beta_1 x - 1)(\beta_2 x - 1)} e^{-2ax}\right]$$

For Dirichlet and Neumann BCs on both plates this leads to

$$\Delta E_{[a_1,a_2]}^{(J,J)} = -\frac{2a^{-D_1}}{(8\pi)(D_1+1)/2} \sum_\beta \sum_{n=1}^{\infty} \frac{f(D_1+1)/2(2n\text{am}_\beta)}{n^{D_1+1}}$$

with $$f_\nu(z) = z^\nu K_\nu(z)$$ → energy always negative
For Dirichlet BC on one plate and Neumann on the other, the interaction component of the vacuum energy is

\[
\Delta E^{(D,N)}_{[a_1,a_2]} = \frac{(4\pi)^{-D_1/2}a}{\Gamma(D_1/2 + 1)} \sum_\beta \int_{m_\beta}^\infty dx \frac{(x^2 - m_\beta^2)^{D_1/2}}{e^{2ax} + 1}
\]

\[
= - \frac{2a^{-D_1}}{(8\pi)^{(D_1+1)/2}} \sum_\beta \sum_{n=1}^{\infty} \frac{f(D_1+1)/2(2nam_\beta)}{(-1)^n n n^{D_1+1}}
\]

positive for all values of the inter-plate distance
For Dirichlet BC on one plate and Neumann on the other, the interaction component of the vacuum energy is

\[
\Delta E^{(D,N)}_{[a_1,a_2]} = \frac{(4 \pi)^{-D_1/2} a}{\Gamma(D_1/2 + 1)} \sum_{\beta} \int_{m_{\beta}}^{\infty} dx \frac{(x^2 - m_{\beta}^2)^{D_1/2}}{e^{2ax} + 1}
\]

\[
= - \frac{2a^{-D_1}}{(8\pi)^{(D_1+1)/2}} \sum_{\beta} \sum_{n=1}^{\infty} \frac{f(D_1+1)/2(2n a m_{\beta})}{(-1)^n n^{D_1+1}}
\]

positive for all values of the inter-plate distance.

In the case of a conformally coupled massless field on the background of a spacetime conformally related to the one described by the line element

\[
ds^2 = g_{MN} dx^M dx^N = \eta_{\mu \nu} dx^\mu dx^\nu - \gamma_{ij} dX^i dX^j
\]

\(\eta_{\mu \nu} = \text{diag}(1,-1,\ldots,-1)\) metric of \((D_1 + 1)\)-dim Minkowski st and \(X^i\) coordinates of \(\Sigma\), with the conformal factor \(\Omega^2(x^{D_1})\). Interaction part of Casimir energy is given (*), with coeffs \(\beta_j\) related to coeffs of the Robin BCs

\[
(1 + \beta_j n^M \nabla_M) \varphi(x) = [1 + (-1)^j \Omega_j^{-1} \beta_j \partial_{D_1}] \varphi(x) = 0, \Omega_j = \Omega(x_j^{D_1})
\]

& conformal factor \(\beta_j = \left[\Omega_j + (-1)^j \frac{D_1-1}{2\Omega_j} \beta_j \Omega_j' \right]^{-1} \beta_j, \Omega_j' = \Omega_j'(x_j^{D_1})\)
In Randall-Sundrum 2-brane model with compact internal space, the Robin coefficients are $\bar{\beta}_j^{-1} = (-1)^j c_j / 2 - 2D\zeta / r_D$, c_1, c_2 mass parameters in the surface action of the scalar field for the left and right branes, respectively. The vacuum energy can have a minimum, for the stable equilibrium point. Can be used in braneworld models for the stabilization of the radion field.
In Randall-Sundrum 2-brane model with compact internal space, the Robin coefficients are \(\beta^{-1}_j = (-1)^j c_j / 2 - 2D\zeta / r_D \), \(c_1, c_2 \) mass parameters in the surface action of the scalar field for the left and right branes, respectively. The vacuum energy can have a minimum, for the stable equilibrium point. Can be used in braneworld models for the stabilization of the radion field.

We have considered a piston-like geometry, introducing a third plate (then this plate is sent to infinity)

\[
P = -\frac{2(4\pi)^{-D_1/2}}{V\Sigma\Gamma(D_1/2)a^{D_1+1}} \sum \int_{am_\beta}^\infty \frac{dx}{(b_1 x-1)(b_2 x-1)} \frac{x^2(x^2 - a^2 m^2) D_1/2-1}{(b_1 x+1)(b_2 x+1)e^{2x} - 1}
\]
In Randall-Sundrum 2-brane model with compact internal space, the Robin coefficients are \(\beta_j^{-1} = (-1)^j c_j/2 - 2D\zeta/r_D \), \(c_1, c_2 \) mass parameters in the surface action of the scalar field for the left and right branes, respectively. The vacuum energy can have a minimum, for the stable equilibrium point. Can be used in braneworld models for the stabilization of the radion field.

We have considered a piston-like geometry, introducing a third plate (then this plate is sent to infinity). Casimir force

\[
P = -\frac{2(4\pi)^{-D_1/2}}{V_\Sigma \Gamma(D_1/2)a^{D_1+1}} \sum_\beta \int_0^\infty \, dx \frac{x^2 (x^2 - a^2 m^2_\beta)^{D_1/2-1}}{(b_1 x-1)(b_2 x-1) e^{2ax} - 1}
\]

With independence of the geometry of the internal space, the force is attractive for Dirichlet or Neumann boundary conditions on both plates

\[
P^{(J,J)} = -\frac{2(4\pi)^{-D_1/2}}{V_\Sigma \Gamma(D_1/2)} \sum_\beta \int_0^\infty \, dx \frac{x^2 (x^2 - m^2_\beta)^{D_1/2-1}}{e^{2ax} - 1}
= \frac{2a^{-D_1-1}}{(8\pi)^{(D_1+1)/2} V_\Sigma} \sum_\beta \sum_{n=1}^\infty \frac{1}{n^{D_1+1}} \left[f(D_1+1)/2(2nam_\beta) - f(D_1+3)/2(2nam_\beta) \right]
\]

\(J = D, N \), and repulsive for Dirichlet BC on one plate and Neumann on the other, a monotonic function of the distance.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates.

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates.

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.

In this limit, to leading order we recover the standard result for the Casimir force between two plates in $(D_1 + 1)$-dim Minkowski spacetime.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates.

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.

In this limit, to leading order we recover the standard result for the Casimir force between two plates in $(D_1 + 1)$-dim Minkowski spacetime.

In absence of zero modes (case of twisted boundary conditions along compactified dimensions), Casimir forces are exponentially suppressed in the limit of small size of the internal space. For small values of the inter-plate distance the Casimir forces are attractive, independently of the values of the Robin coefficients, except for the case of Dirichlet boundary conditions on one plate and non-Dirichlet boundary conditions on the other.

In this latter case, the Casimir force is repulsive at small distances.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates.

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.

In this limit, to leading order we recover the standard result for the Casimir force between two plates in $(D_1 + 1)$-dim Minkowski spacetime.

In absence of zero modes (case of twisted boundary conditions along compactified dimensions), Casimir forces are exponentially suppressed in the limit of small size of the internal space. For small values of the inter-plate distance the Casimir forces are attractive, independently of the values of the Robin coefficients, except for the case of Dirichlet boundary conditions on one plate and non-Dirichlet boundary conditions on the other.

In this latter case, the Casimir force is repulsive at small distances.

Interesting remark: this property could be used in the proposal of a Casimir experiment with the purpose to carry out an explicit detailed observation of ‘large’ extra dimensions as allowed by some models of particle physics.
Gravity Eqs as Eqs of State: f(R) Case

The cosmological constant as an “integration constant”

T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
 Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from
 local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to
 space-time thermodynamics as seen by a local observer
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

- Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from
 local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to
 space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context:
 Einstein’s Eqs are to be viewed as EoS
Gravity Eqs as Eqs of State: $f(R)$ Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
 Unimodular Gravity
 Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context: Einstein’s Eqs are to be viewed as EoS

- Should, probably, not be taken as basic for quantizing gravity
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

- Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context:
 Einstein’s Eqs are to be viewed as EoS

- Should, probably, not be taken as basic for quantizing gravity

- C. Eling, R. Guedens, T. Jacobson [PRL2006]: extension to polynomial $f(R)$ gravity but as non-equilibrium thermodyn.
 Also Erik Verlinde (private discussions)
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proport to variation of the horizon area: \(\delta S = \eta \delta A \)
- local temperature \(T \) defined as Unruh temp: \(T = \frac{\hbar k}{2\pi} \)
- functional dependence of \(S \) wrt energy and size of system
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proport to variation of the horizon area: \(\delta S = \eta \delta A \)
- local temperature \(T \) defined as Unruh temp: \(T = \frac{\hbar k}{2\pi} \)
- functional dependence of \(S \) wrt energy and size of system

Key point in our generalization: the definition of the local entropy (Iyer+Wald 93: local boost inv, Noether charge)

\[S = -2\pi \int_{\Sigma} E_{R}^{pqrs} \epsilon_{pq} \epsilon_{rs}, \quad \delta S = \delta (\eta_{e} A) \]

\(\eta_{e} \) is a function of the metric and its deriv’s to a given order

\[\eta_{e} = \eta_{e} \left(g_{ab}, R_{cdef}, \nabla^{(l)} R_{pqrs} \right) \]
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proportional to variation of the horizon area: \(\delta S = \eta \delta A \)
- local temperature \(T \) defined as Unruh temp: \(T = \frac{\hbar k}{2\pi} \)
- functional dependence of \(S \) wrt energy and size of system

Key point in our generalization: the definition of the local entropy (Iyer+Wald 93: local boost inv, Noether charge)

\[S = -2\pi \int_{\Sigma} E_{R}^{pqrs} \epsilon_{pq\epsilon_{rs}}, \quad \delta S = \delta (\eta_{e} A) \]

\(\eta_{e} \) is a function of the metric and its deriv’s to a given order

\[\eta_{e} = \eta_{e} \left(g_{ab}, R_{cdef}, \nabla^{(l)} R_{pqrs} \right) \]

Case of \(f(R) \) gravities: \(L = f(R, \nabla^{n} R) \)
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E_{R}^{pqrs} \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} = \frac{\eta e}{2\pi}, \quad S = \frac{A}{4 G_{\text{eff}}}
\]
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E_{R}^{pqrs} \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \epsilon_{pq} \epsilon_{rs}
\]

\[
= \frac{\partial f}{\partial R} = \frac{\eta_{e}}{2\pi}, \quad S = \frac{A}{4G_{\text{eff}}}
\]

For these theories, the different polarizations of the gravitons only enter in the definition of the effective Newton constant through the metric itself.
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E^{pqrs}_R \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} = \frac{\eta_e}{2\pi}, \quad S = \frac{A}{4G_{\text{eff}}}
\]

For these theories, the different polarizations of the gravitons only enter in the definition of the effective Newton constant through the metric itself.

Final result, for \(f(R) \) gravities:

the local field equations can be thought of as an equation of state of equilibrium thermodynamics (as in the GR case)
Jacobson’s argument non-trivially extended to $f(R)$ gravity field equations as EoS of local space-time thermodynamics.

EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton exchange (effective propagator)
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton exchange (effective propagator)

S-F Wu, G-H Yang, P-M Zhang, arXiv:0805.4044, direct extension of our results to Brans-Dicke and scalar-tensor gravities
Hořava made a proposal for an ultraviolet completion of GR:

Hořava-Lifshitz gravity [arXiv:0901.3775]
Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory
Hořava-Lifshitz Gravity

Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting
Hořava-Lifshitz Gravity

Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting

Ultraviolet behavior obtained by introducing irrelevant operators that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences
Hořava made a proposal for an ultraviolet completion of GR:

Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting

Ultraviolet behavior obtained by introducing irrelevant operators that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences

Lorentz invariance is expected to be recovered at low energies, as an accidental symmetry of the theory
Hořava-Lifshitz Gravity

Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting

Ultraviolet behavior obtained by introducing irrelevant operators that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences

Lorentz invariance is expected to be recovered at low energies, as an accidental symmetry of the theory

HL proposal came with the possibility of imposing or not the so-called detailed balance condition: a restriction on the form of the potential terms which may appear in the Lagrangian that leads to simplifications: reduces # of couplings
Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting

Ultraviolet behavior obtained by introducing irrelevant operators that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences

Lorentz invariance is expected to be recovered at low energies, as an accidental symmetry of the theory

HL proposal came with the possibility of imposing or not the so-called detailed balance condition: a restriction on the form of the potential terms which may appear in the Lagrangian that leads to simplifications: reduces # of couplings

HL th research on: its internal consistency, how to define the infrared limit, its compatibility with GR, and potential application to cosmology
Hořava-Lifshitz Gravity

Hořava made a proposal for an ultraviolet completion of GR:

Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the *Lifshitz theory*

Seems to be *renormalizable*, at least at the level of *power counting*

Ultraviolet behavior obtained by introducing *irrelevant operators* that explicitly *break Lorentz invariance* but ameliorate the ultraviolet divergences

Lorentz invariance is expected to be *recovered at low energies*, as an accidental symmetry of the theory

HL proposal came with the possibility of imposing or not the so-called *detailed balance condition*: a restriction on the form of the potential terms which may appear in the Lagrangian that leads to simplifications: *reduces # of couplings*

HL th research on: its internal *consistency*, how to define the *infrared limit*, its *compatibility* with GR, and potential *application to cosmology*

Consistency status of the theory *not yet completely clear*, nor its low energy limit, and *how GR is recovered* at the different regimes
Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity
Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized
Phase Sp of Hořava-Lifshitz Cosmologies

- Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

- The cosmological phase space of the HL model is characterized

- The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)
Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized

The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe
Phase Sp of Hořava-Lifshitz Cosmologies

- Dynamical system approach \rightarrow properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

- The cosmological phase space of the HL model is characterized.

- The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

- In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe.

- Also, imposing detailed balance leads to a cc with the wrong sign.
Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized

The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe

Also, imposing detailed balance leads to a cc with the wrong sign

We show that the cosmological models generated from HL gravity without the detailed balance assumption have the potential to describe the transition between the Friedmann and the dark energy eras
Dynamical system approach → properties of cosmological models based on the Horava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized

The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe

Also, imposing detailed balance leads to a cc with the wrong sign

We show that the cosmological models generated from HL gravity without the detailed balance assumption have the potential to describe the transition between the Friedmann and the dark energy eras

Plausible conclusion: a HL cosmology compatible with the present observt’s of the universe only possible if the detailed balance condition is broken

Phase Sp of Hořava-Lifshitz Cosmologies

- **Dynamical system** approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

- The **cosmological phase space** of the HL model is characterized

- The analysis allows to compare some key physical consequences of imposing (or not) **detailed balance** (Sotiriou, Visser, Weinfurtner)

- In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe

- Also, imposing detailed balance leads to a cc with the **wrong sign**

- We show that the cosmological models generated from HL gravity **without** the detailed balance assumption have the potential to describe the transition between the Friedmann and the dark energy eras

- **Plausible conclusion:** a HL cosmology compatible with the present observ’t’s of the universe **only** possible if the detailed balance condition is **broken**

Thanks for your attention
Prof. Manuel Asorey

http://www.benasque.org/
Centro de Benasque “Pedro Pascual”

Prof. Manuel Asorey

http://www.benasque.org/
Centro de Benasque “Pedro Pascual”

Prof. Manuel Asorey

http://www.benasque.org/
Centro de Benasque “Pedro Pascual”

Prof. Manuel Asorey

http://www.benasque.org/
Centro de Benasque “Pedro Pascual”

Prof. Manuel Asorey

http://www.benasque.org/