Quantum Vacuum Fluctuations at the Cosmological Level

EMILIO ELIZALDE
ICE/CSIC & IEEC, UAB, Barcelona, Spain

“Dynamics and Thermodynamics of Black Holes and Naked Singularities”

Politecnico di Milano - Dipartimento di Matematica, May 12th, 2007
Outline of (an ideal) presentation

- \(\Psi \)DOs, Zeta Functions, Determinants, and Traces
Outline of (an ideal) presentation

- ΨDOs, Zeta Functions, Determinants, and Traces
- Wodzicki Residue, Multiplicative (or Noncommutative) Anomaly, or Defect
Outline of (an ideal) presentation

- ΨDOs, Zeta Functions, Determinants, and Traces
- Wodzicki Residue, Multiplicative (or Noncommutative) Anomaly, or Defect
- Singularities of $\zeta_A(s)$
Outline of (an ideal) presentation

- ΨDOs, Zeta Functions, Determinants, and Traces
- Wodzicki Residue, Multiplicative (or Noncommutative) Anomaly, or Defect
- Singularities of $\zeta_A(s)$
- The Chowla-Selberg Expansion Formula (CS) & Extended Expressions (ECS)
Outline of (an ideal) presentation

- ΨDOs, Zeta Functions, Determinants, and Traces
- Wodzicki Residue, Multiplicative (or Noncommutative) Anomaly, or Defect
- Singularities of $\zeta_A(s)$
- The Chowla-Selberg Expansion Formula (CS) & Extended Expressions (ECS)

Physics:
- Quantum vacuum fluctuations
 - Laboratory (Dynamical CE) J Haro, EE, PRL’06
 - Actuators (Technology) F Capasso et al, R Onofrio
- At Cosmological Scale
- Non-commutative QFTs (quadratic standard case)
- New developments (quadratic non-standard cases)
A ΨDO of order m M_n manifold

Symbol of A: $a(x, \xi) \in S^m(\mathbb{R}^n \times \mathbb{R}^n) \subset C^\infty$ functions such that for any pair of multi-indices α, β there exists a constant $C_{\alpha, \beta}$ so that

$$\left| \partial_\xi^\alpha \partial_x^\beta a(x, \xi) \right| \leq C_{\alpha, \beta} (1 + |\xi|)^{m-|\alpha|}$$
Pseudodifferential Operator (ΨDO)

- **A ΨDO of order** m **on** M_n **manifold**

- **Symbol of** A: $a(x, \xi) \in S^m(\mathbb{R}^n \times \mathbb{R}^n) \subset C^\infty$ functions such that for any pair of multi-indices α, β there exists a constant $C_{\alpha, \beta}$ so that

\[
\left| \partial_\xi^\alpha \partial_x^\beta a(x, \xi) \right| \leq C_{\alpha, \beta} (1 + |\xi|)^{m-|\alpha|}
\]

Definition of A **(in the distribution sense)**

\[
Af(x) = (2\pi)^{-n} \int e^{i<x,\xi>} a(x, \xi) \hat{f}(\xi) \, d\xi
\]

- f **is a smooth function**

\[
f \in S = \{ f \in C^\infty(\mathbb{R}^n); \sup_x |x^\beta \partial^\alpha f(x)| < \infty, \forall \alpha, \beta \in \mathbb{N}^n \}
\]

- S' **space of tempered distributions**

- \hat{f} **is the Fourier transform of** f
ψDOs are useful tools

The symbol of a ψDO has the form:

\[a(x, \xi) = a_m(x, \xi) + a_{m-1}(x, \xi) + \cdots + a_{m-j}(x, \xi) + \cdots \]

being \(a_k(x, \xi) = b_k(x) \xi^k \)

\(a(x, \xi) \) is said to be elliptic if it is invertible for large \(|\xi|\) and if there exists a constant \(C \) such that \(|a(x, \xi)^{-1}| \leq C(1 + |\xi|)^{-m} \), for \(|\xi| \geq C\)

- An elliptic ψDO is one with an elliptic symbol
\textbf{\(\Psi\)DOs are useful tools}

The symbol of a \(\Psi\)DO has the form:

\[
a(x, \xi) = a_m(x, \xi) + a_{m-1}(x, \xi) + \cdots + a_{m-j}(x, \xi) + \cdots
\]

being \(a_k(x, \xi) = b_k(x) \xi^k\)

\(a(x, \xi)\) is said to be \textbf{elliptic} if it is invertible for large \(|\xi|\) and if there exists a constant \(C\) such that \(|a(x, \xi)^{-1}| \leq C(1 + |\xi|)^{-m}\), for \(|\xi| \geq C\)

- An elliptic \(\Psi\)DO is one with an elliptic symbol

--- \(\Psi\)DOs are basic tools both in Mathematics & in Physics ---

1. Proof of \textbf{uniqueness of Cauchy problem} \ [Calderón-Zygmund]

2. Proof of the \textbf{Atiyah-Singer index formula}

3. In QFT they appear in any analytical continuation process —as \textbf{complex powers of differential operators}, like the Laplacian \ [Seeley, Gilkey, ...]

4. Basic starting point of any rigorous formulation of QFT & gravitational interactions through \(\mu\)\textbf{localization} (the most important step towards the understanding of linear PDEs since the invention of distributions) \ [Fredenhagen, Brunetti, ... R. Wald '06]
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$

2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$

2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold

(a) The zeta function is defined as:

$$\zeta_A(s) = \text{tr } A^{-s} = \sum_{j} \lambda_j^{-s}, \quad \text{Re } s > \frac{n}{m} := s_0$$

$\{\lambda_j\}$ ordered spect of A, $s_0 = \text{dim } M/\text{ord } A$ absissa of converg of $\zeta_A(s)$
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$
2. A acts on the space of smooth sections of E, n-dim vector bundle over
3. M closed n-dim manifold

(a) The zeta function is defined as:
$$\zeta_A(s) = \text{tr} \ A^{-s} = \sum_j \lambda_j^{-s}, \quad \text{Re} \ s > \frac{n}{m} := s_0$$

\{λ_j\} ordered spect of A, $s_0 = \dim M/\text{ord} A$ abscissa of converg of $\zeta_A(s)$

(b) $\zeta_A(s)$ has a meromorphic continuation to the whole complex plane \mathbb{C} (regular at $s = 0$), provided the principal symbol of A, $a_m(x, \xi)$, admits a spectral cut: $L_\theta = \{\lambda \in \mathbb{C}; \ \text{Arg} \ \lambda = \theta, \ \theta_1 < \theta < \theta_2\}$, $\text{Spec} A \cap L_\theta = \emptyset$ (the Agmon-Nirenberg condition)
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$

2. A acts on the space of smooth sections of

3. E, n-dim vector bundle over

4. M closed n-dim manifold

(a) The zeta function is defined as:

$$\zeta_A(s) = \text{tr} A^{-s} = \sum_j \lambda_j^{-s}, \quad \text{Re } s > \frac{n}{m} := s_0$$

$\{\lambda_j\}$ ordered spect of A, $s_0 = \dim M/\text{ord } A$ absccissa of converg of $\zeta_A(s)$

(b) $\zeta_A(s)$ has a meromorphic continuation to the whole complex plane \mathbb{C} (regular at $s = 0$), provided the principal symbol of A, $a_m(x, \xi)$, admits a spectral cut: $L_\theta = \{\lambda \in \mathbb{C}; \text{Arg } \lambda = \theta, \theta_1 < \theta < \theta_2\}$, $\text{Spec } A \cap L_\theta = \emptyset$

(the Agmon-Nirenberg condition)

(c) The definition of $\zeta_A(s)$ depends on the position of the cut L_θ
Existence of ζ_A for A a ΨDO

1. A a positive-definite elliptic ΨDO of positive order $m \in \mathbb{R}^+$
2. A acts on the space of smooth sections of
3. E, n-dim vector bundle over
4. M closed n-dim manifold

(a) The zeta function is defined as:

$$\zeta_A(s) = \text{tr} A^{-s} = \sum_j \lambda_j^{-s}, \quad \text{Re } s > \frac{n}{m} := s_0$$

$\{\lambda_j\}$ ordered spec of A, $s_0 = \dim M/\text{ord } A$ abscissa of converg of $\zeta_A(s)$

(b) $\zeta_A(s)$ has a meromorphic continuation to the whole complex plane \mathbb{C} (regular at $s = 0$), provided the principal symbol of A, $a_m(x, \xi)$, admits a spectral cut: $L_\theta = \{\lambda \in \mathbb{C}; \text{Arg } \lambda = \theta, \theta_1 < \theta < \theta_2\}$, $\text{Spec } A \cap L_\theta = \emptyset$ (the Agmon-Nirenberg condition)

(c) The definition of $\zeta_A(s)$ depends on the position of the cut L_θ

(d) The only possible singularities of $\zeta_A(s)$ are poles at

$$s_j = (n - j)/m, \quad j = 0, 1, 2, \ldots, n - 1, n + 1, \ldots$$
DOs on boundaryless manifolds

M compact n-dim C^∞ manifold without a boundary, provided with a smooth volume element
ΨDOs on boundaryless manifolds

- M compact n-dim C^∞ manifold without a boundary, provided with a smooth volume element

- E smooth Hermitian vector bundle over M
ΨDOs on boundaryless manifolds

- M compact n-dim C^∞ manifold without a boundary, provided with a smooth volume element
- E smooth Hermitian vector bundle over M
- A a positive ΨDO of positive order m in E, elliptic and selfadjoint (admissible)
\textbf{ΨDOs on boundaryless manifolds}

- \(M \) compact \(n \)-dim \(C^\infty \) manifold without a boundary, provided with a smooth volume element

- \(E \) smooth Hermitian vector bundle over \(M \)

- \(A \) a positive \(ΨDO \) of positive order \(m \) in \(E \), elliptic and selfadjoint (admissible)

- \(e^{-tA} \) solution operator \(e^{-tA} : f \mapsto u \) for the heat equation
 \[\partial_t u + A u = 0 \]
 with initial value \(u|_{t=0} = f \)
ΨDOs on boundaryless manifolds

- M compact n-dim C^∞ manifold without a boundary, provided with a smooth volume element

- E smooth Hermitian vector bundle over M

- A a positive ΨDO of positive order m in E, elliptic and selfadjoint (admissible)

- e^{-tA} solution operator $e^{-tA} : f \mapsto u$ for the heat equation $\partial_t u + Au = 0$ with initial value $u|_{t=0} = f$

- This operator is traceclass $\forall t > 0$, and as $t \downarrow 0$

$$\text{tr} e^{-tA} \sim \sum_{j=0}^\infty \alpha_j(A)t^{(j-n)/m} + \sum_{k=1}^\infty \beta_k(A)t^k \log t$$
\[\Psi \text{DOs on boundaryless manifolds} \]

- \(M \) compact \(n \)-dim \(C^\infty \) manifold without a boundary, provided with a smooth volume element
- \(E \) smooth Hermitian vector bundle over \(M \)
- \(A \) a positive \(\Psi \)DO of positive order \(m \) in \(E \), elliptic and selfadjoint (admissible)
- \(e^{-tA} \) solution operator \(e^{-tA} : f \mapsto u \) for the heat equation \(\partial_t u + Au = 0 \) with initial value \(u|_{t=0} = f \)
- This operator is traceclass \(\forall t > 0 \), and as \(t \downarrow 0 \)
 \[\text{tr} \, e^{-tA} \sim \sum_{j=0}^\infty \alpha_j(A) t^{(j-n)/m} + \sum_{k=1}^\infty \beta_k(A) t^k \log t \]
- By Mellin transform:
 \[\zeta_A(s) = \frac{1}{\Gamma(s)} \int_0^\infty e^{-tA} t^{s-1} \, dt \]
\(\zeta_A(s) \) has a meromorphic extension with only possible poles at

\[
s_j = (n - j)/m, \ j \in \mathbb{N},
\]

at most simple at \(s_j \notin -\mathbb{N} \), at most double at \(s_j \in -\mathbb{N} \)
\[\zeta_A(s) \] has a meromorphic extension with only possible poles at

\[s_j = (n - j)/m, \ j \in \mathbb{N}, \]

at most simple at \(s_j \notin -\mathbb{N} \), at most double at \(s_j \in -\mathbb{N} \)

Moreover

\[\alpha_j(A) = \text{Res}_{s=s_j} \Gamma(s) \zeta_A(s), \quad \beta_k(A) = \text{Res}_{s=-k(s+k)} \Gamma(s) \zeta_A(s) \]
ζ_A(s) has a meromorphic extension with only possible poles at
\[s_j = (n - j)/m, \ j \in \mathbb{N}, \]
at most simple at \(s_j \notin -\mathbb{N} \), at most double at \(s_j \in -\mathbb{N} \).

Moreover
\[\alpha_j(A) = \text{Res}_{s=s_j} \Gamma(s) \zeta_A(s), \quad \beta_k(A) = \text{Res}_{s=-k} (s+k) \Gamma(s) \zeta_A(s) \]

The asympt expansion of the heat kernel determines the pole structure of \(\zeta_A(s) \), and vice versa.
\(\zeta_A(s) \) has a meromorphic extension with only possible poles at
\[
s_j = (n - j)/m, \ j \in \mathbb{N},
\]
at most simple at \(s_j \notin -\mathbb{N} \), at most double at \(s_j \in -\mathbb{N} \)

Moreover
\[
\alpha_j(A) = \text{Res}_{s=s_j} \Gamma(s) \zeta_A(s), \quad \beta_k(A) = \text{Res}_{s=-k} (s+k) \Gamma(s) \zeta_A(s)
\]

The asympt expansion of the heat kernel determines the pole structure of \(\zeta_A(s) \), and vice versa

If \(A \) is a diff operator, then: \(\alpha_j(A) = 0, \ j \text{ odd}, \ \beta_k(A) = 0, \forall k \)
\(\zeta_A(s) \) has a meromorphic extension with only possible poles at
\[
s_j = (n - j)/m, \ j \in \mathbb{N},
\]

at most simple at \(s_j \notin -\mathbb{N} \), at most double at \(s_j \in -\mathbb{N} \)

Moreover
\[
\alpha_j(A) = \text{Res}_{s=s_j} \Gamma(s) \zeta_A(s), \quad \beta_k(A) = \text{Res}_{s=-k} (s+k) \Gamma(s) \zeta_A(s)
\]

The asympt expansion of the heat kernel determines the pole structure of \(\zeta_A(s) \), and vice versa

If \(A \) is a diff operator, then: \(\alpha_j(A) = 0, \ j \) odd, \(\beta_k(A) = 0, \forall k \)

If \(A \geq 0 \) all holds for \(A - \text{Ker}A \), subtract DimKer to Res at 0
\[\zeta_A(s) \text{ has a meromorphic extension with only possible poles at } \]
\[s_j = \frac{(n - j)}{m}, \quad j \in \mathbb{N}, \]
\[\text{at most simple at } s_j \notin -\mathbb{N}, \quad \text{at most double at } s_j \in -\mathbb{N} \]

Moreover
\[\alpha_j(A) = \text{Res}_{s=s_j} \Gamma(s) \zeta_A(s), \quad \beta_k(A) = \text{Res}_{s=-k} (s+k) \Gamma(s) \zeta_A(s) \]

The asympt expansion of the heat kernel determines the pole structure of \(\zeta_A(s) \), and vice versa.

If \(A \) is a diff operator, then: \(\alpha_j(A) = 0, \ j \text{ odd, } \beta_k(A) = 0, \forall k \)

If \(A \geq 0 \) all holds for \(A - \text{Ker} A \), subtract DimKer to Res at 0

If \(s_j \in \mathbb{N} \), then \(\alpha_j(A) \) is not locally computable

G. Cognola, L. Vanzo, S. Zerbini, JMP, 1992
Definition of Determinant

$H \Psi DO$ operator $\{\varphi_i, \lambda_i\}$ spectral decomposition
Definition of Determinant

\[H \Rightarrow \Psi \text{DO operator} \quad \{\varphi_i, \lambda_i\} \quad \text{spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \quad ?! \quad \ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]
Definition of Determinant

H DO operator $\{\varphi_i, \lambda_i\}$ spectral decomposition

$$\prod_{i \in I} \lambda_i \quad \ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i$$

Riemann zeta func: $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \ Re \ s > 1$ (& analytic cont)

Definition: zeta function of H $\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr} \ H^{-s}$

As Mellin transform: $\zeta_H(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} \ \text{tr} \ e^{-tH}, \ Re \ s > s_0$

Derivative: $\zeta'_H(0) = - \sum_{i \in I} \ln \lambda_i$
Definition of Determinant

\[H \psi \text{DO operator} \{ \varphi_i, \lambda_i \} \text{ spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \quad \text{?!} \quad \ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]

Riemann zeta func: \[\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \quad \text{Re } s > 1 \quad (\& \text{ analytic cont}) \]

Definition: zeta function of \(H \)

\[\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr } H^{-s} \]

As Mellin transform: \[\zeta_H(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} dt \; t^{s-1} \text{tr } e^{-tH}, \quad \text{Re } s > s_0 \]

Derivative: \[\zeta'_H(0) = -\sum_{i \in I} \ln \lambda_i \]

Determinant: \[\text{Ray & Singer, '67} \quad \det_\zeta H = \exp \left[-\zeta'_H(0) \right] \]
Definition of Determinant

\[H \psi \text{DO operator} \{\varphi_i, \lambda_i\} \text{ spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \ ?! \]

\[\ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]

Riemann zeta func: \(\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \ Re \ s > 1 \) (\& analytic cont)

Definition: zeta function of \(H \)

\[\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr} \ H^{-s} \]

As Mellin transform: \(\zeta_H(s) = \frac{1}{\Gamma(s)} \int_0^{\infty} dt \ t^{s-1} \text{tr} \ e^{-tH}, \ Re \ s > s_0 \)

Derivative: \(\zeta'_H(0) = -\sum_{i \in I} \ln \lambda_i \)

Determinant: Ray & Singer, ’67

\[\det_\zeta H = \exp[-\zeta'_H(0)] \]

Weierstrass def: subtract leading behavior of \(\lambda_i \) in \(i \), as \(i \to \infty \), until series \(\sum_{i \in I} \ln \lambda_i \) converges \(\implies \) non-local counterterms !!
Definition of Determinant

\[H \Psi \text{DO operator} \{ \varphi_i, \lambda_i \} \text{ spectral decomposition} \]

\[\prod_{i \in I} \lambda_i \]

\[\ln \prod_{i \in I} \lambda_i = \sum_{i \in I} \ln \lambda_i \]

Riemann zeta func: \[\zeta(s) = \sum_{n=1}^{\infty} n^{-s}, \ Re \ s > 1 \] (& analytic cont)

Definition: zeta function of \(H \)

\[\zeta_H(s) = \sum_{i \in I} \lambda_i^{-s} = \text{tr} \ H^{-s} \]

As Mellin transform:

\[\zeta_H(s) = \frac{1}{\Gamma(s)} \int_{0}^{\infty} dt \ t^{s-1} \text{tr} \ e^{-tH}, \ Re \ s > s_0 \]

Derivative:

\[\zeta'_H(0) = -\sum_{i \in I} \ln \lambda_i \]

Determinant: Ray & Singer, ’67

\[\det_{\zeta} H = \exp [-\zeta'_H(0)] \]

Weierstrass def: subtract leading behavior of \(\lambda_i \) in \(i \), as \(i \to \infty \), until series \(\sum_{i \in I} \ln \lambda_i \) converges \(\implies \) non-local counterterms !!

C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,...
Properties

The definition of the determinant $\det_\zeta A$ only depends on the homotopy class of the cut.
Properties

- The definition of the determinant \(\det_\zeta A \) only depends on the homotopy class of the cut.

- A zeta function (and corresponding determinant) with the same meromorphic structure in the complex \(s \)-plane and extending the ordinary definition to operators of complex order \(m \in \mathbb{C} \setminus \mathbb{Z} \) (they do not admit spectral cuts), has been obtained [Kontsevich and Vishik].
Properties

- The definition of the determinant $\det_\zeta A$ only depends on the homotopy class of the cut.

- A zeta function (and corresponding determinant) with the same meromorphic structure in the complex s-plane and extending the ordinary definition to operators of complex order $m \in \mathbb{C}\setminus\mathbb{Z}$ (they do not admit spectral cuts), has been obtained [Kontsevich and Vishik].

- Asymptotic expansion for the heat kernel:
Properties

- The definition of the determinant $\det_\zeta A$ only depends on the homotopy class of the cut.

- A zeta function (and corresponding determinant) with the same meromorphic structure in the complex s-plane and extending the ordinary definition to operators of complex order $m \in \mathbb{C} \setminus \mathbb{Z}$ (they do not admit spectral cuts), has been obtained [Kontsevich and Vishik].

Asymptotic expansion for the heat kernel:

$$\text{tr } e^{-tA} = \sum'_{\lambda \in \text{Spec } A} e^{-t\lambda}$$

$$\sim \alpha_n(A) + \sum_{n \neq j \geq 0} \alpha_j(A) t^{-s_j} + \sum_{k \geq 1} \beta_k(A) t^k \ln t, \quad t \downarrow 0$$

$$\alpha_n(A) = \zeta_A(0), \quad \alpha_j(A) = \Gamma(s_j) \text{Res}_{s=s_j} \zeta_A(s), \quad s_j \notin -\mathbb{N}$$

$$\alpha_j(A) = \frac{(-1)^k}{k!} \left[\text{PP } \zeta_A(-k) + \psi(k + 1) \text{Res}_{s=-k} \zeta_A(s) \right],$$

$$\beta_k(A) = \frac{(-1)^{k+1}}{k!} \text{Res}_{s=-k} \zeta_A(s), \quad k \in \mathbb{N} \setminus \{0\} \quad s_j = -k, \quad k \in \mathbb{N}$$

$$\text{PP } \phi := \lim_{s \rightarrow p} \left[\phi(s) - \frac{\text{Res}_{s=p} \phi(s)}{s-p} \right]$$
In order to write down an action in operator language one needs a functional that replaces integration.
The Dixmier Trace

In order to write down an action in operator language one needs a functional that replaces integration.

For the Yang-Mills theory this is the Dixmier trace.
The Dixmier Trace

In order to write down an action in operator language one needs a functional that replaces integration.

For the Yang-Mills theory this is the **Dixmier trace**

It is the **unique** extension of the usual trace to the ideal $L^{(1, \infty)}$ of the compact operators T such that the partial sums of its spectrum diverge logarithmically as the number of terms in the sum:

$$\sigma_N(T) := \sum_{j=0}^{N-1} \mu_j = O(\log N), \quad \mu_0 \geq \mu_1 \geq \cdots$$
The Dixmier Trace

In order to write down an action in operator language one needs a functional that replaces integration.

For the Yang-Mills theory this is the Dixmier trace.

It is the unique extension of the usual trace to the ideal $\mathcal{L}^{(1,\infty)}$ of the compact operators T such that the partial sums of its spectrum diverge logarithmically as the number of terms in the sum:

$$\sigma_N(T) := \sum_{j=0}^{N-1} \mu_j = \mathcal{O}(\log N), \quad \mu_0 \geq \mu_1 \geq \cdots$$

Definition of the Dixmier trace of T:

$$\text{Dtr} \ T = \lim_{N \to \infty} \frac{1}{\log N} \sigma_N(T)$$

provided that the Cesaro means $M(\sigma)(N)$ of the sequence in N are convergent as $N \to \infty$ [remember: $M(f)(\lambda) = \frac{1}{\ln \lambda} \int_1^\lambda f(u) \frac{du}{u}$]
In order to write down an action in operator language one needs a functional that replaces integration.

For the Yang-Mills theory this is the Dixmier trace.

It is the unique extension of the usual trace to the ideal \(\mathcal{L}^{(1,\infty)} \) of the compact operators \(T \) such that the partial sums of its spectrum diverge logarithmically as the number of terms in the sum:

\[
\sigma_N(T) := \sum_{j=0}^{N-1} \mu_j = \mathcal{O}(\log N), \quad \mu_0 \geq \mu_1 \geq \cdots
\]

Definition of the Dixmier trace of \(T \):

\[
\text{Dtr} \ T = \lim_{N \to \infty} \frac{1}{\log N} \sigma_N(T)
\]

provided that the Cesaro means \(M(\sigma)(N) \) of the sequence in \(N \) are convergent as \(N \to \infty \) [remember: \(M(f)(\lambda) = \frac{1}{\ln \lambda} \int_{1}^{\lambda} f(u) \frac{du}{u} \)]

The Hardy-Littlewood theorem can be stated in a way that connects the Dixmier trace with the residue of the zeta function of the operator \(T^{-1} \) at \(s = 1 \) [Connes]:

\[
\text{Dtr} \ T = \lim_{s \to 1^+} (s - 1) \zeta_{T^{-1}}(s)
\]
The Wodzicki Residue

The Wodzicki (or noncommutative) residue is the only extension of the Dixmier trace to \(\Psi \)DOs which are not in \(\mathcal{L}^{(1,\infty)} \).
The Wodzicki Residue

- The Wodzicki (or noncommutative) residue is the only extension of the Dixmier trace to ΨDOs which are not in $\mathcal{L}^{(1,\infty)}$.

- Only trace one can define in the algebra of ΨDOs (up to multipl const).
The Wodzicki Residue

- The Wodzicki (or noncommutative) residue is the only extension of the Dixmier trace to ΨDOs which are not in $L^{(1,\infty)}$

- Only trace one can define in the algebra of ΨDOs (up to multipl const)

- Definition: $\text{res } A = 2 \text{Res}_{s=0} \text{tr } (A\Delta^{-s})$, Δ Laplacian
The Wodzicki Residue

- The Wodzicki (or noncommutative) residue is the only extension of the Dixmier trace to \(\Psi \)DOs which are not in \(L^{(1,\infty)} \)

- Only trace one can define in the algebra of \(\Psi \)DOs (up to multipl const)

- Definition: \(\text{res } A = 2 \text{ Res}_{s=0} \text{ tr } (A\Delta^{-s}), \quad \Delta \text{ Laplacian} \)

- Satisfies the trace condition: \(\text{res } (AB) = \text{res } (BA) \)
The Wodzicki Residue

The Wodzicki (or noncommutative) residue is the only extension of the Dixmier trace to ΨDOs which are not in $L^{(1,\infty)}$.

Only trace one can define in the algebra of ΨDOs (up to multipl const).

Definition: $\text{res } A = 2 \text{ Res}_{s=0} \text{ tr } (A \Delta^{-s})$, Δ Laplacian.

Satisfies the trace condition: $\text{res } (AB) = \text{res } (BA)$.

Important!: it can be expressed as an integral (local form)

$$\text{res } A = \int_{S^*M} \text{ tr } a_{-n}(x, \xi) \, d\xi$$

with $S^*M \subset T^*M$ the co-sphere bundle on M (some authors put a coefficient in front of the integral: Adler-Manin residue).
The Wodzicki Residue

- The Wodzicki (or noncommutative) residue is the only extension of the Dixmier trace to \(\Psi \)DOs which are not in \(L^{(1,\infty)} \).
- Only trace one can define in the algebra of \(\Psi \)DOs (up to multipl const).
- Definition: \(\text{res } A = 2 \text{Res}_{s=0} \text{tr} (A\Delta^{-s}) \), \(\Delta \) Laplacian.
- Satisfies the trace condition: \(\text{res } (AB) = \text{res } (BA) \).
- Important!: it can be expressed as an integral (local form)

\[
\text{res } A = \int_{S^*M} \text{tr } a_{-n}(x, \xi) \, d\xi
\]

with \(S^*M \subset T^*M \) the co-sphere bundle on \(M \) (some authors put a coefficient in front of the integral: Adler-Manin residue).

- If \(\dim M = n = - \text{ord } A \) (\(M \) compact Riemann, \(A \) elliptic, \(n \in \mathbb{N} \)) it coincides with the Dixmier trace, and \(\text{Res}_{s=1} \zeta_A(s) = \frac{1}{n} \text{res } A^{-1} \).
The Wodzicki Residue

- The Wodzicki (or noncommutative) residue is the only extension of the Dixmier trace to ΨDOs which are not in $L^{(1,\infty)}$

- Only trace one can define in the algebra of ΨDOs (up to multipl const)

- Definition: $\text{res } A = 2 \text{ Res}_{s=0} \text{ tr } (A \Delta^{-s})$, Δ Laplacian

- Satisfies the trace condition: $\text{res } (AB) = \text{res } (BA)$

- Important!: it can be expressed as an integral (local form)

$$\text{res } A = \int_{S^*M} \text{ tr } a_{-n}(x, \xi) \ d\xi$$

with $S^*M \subset T^*M$ the co-sphere bundle on M (some authors put a coefficient in front of the integral: Adler-Manin residue)

- If $\dim M = n = - \text{ ord } A$ (M compact Riemann, A elliptic, $n \in \mathbb{N}$) it coincides with the Dixmier trace, and $\text{Res}_{s=1} \zeta_A(s) = \frac{1}{n} \text{res } A^{-1}$

- The Wodzicki residue makes sense for ΨDOs of arbitrary order. Even if the symbols $a_j(x, \xi), j < m$, are not coordinate invariant, the integral is, and defines a trace
Singularities of ζ_A

A complete determination of the meromorphic structure of some zeta functions in the complex plane can be also obtained by means of the Dixmier trace and the Wodzicki residue.
Singularities of ζ_A

- A complete determination of the meromorphic structure of some zeta functions in the complex plane can be also obtained by means of the Dixmier trace and the Wodzicki residue.

- Missing for full descript of the singularities: residua of all poles.
Singularities of ζ_A

A complete determination of the meromorphic structure of some zeta functions in the complex plane can be also obtained by means of the Dixmier trace and the Wodzicki residue.

Missing for full descript of the singularities: residua of all poles

As for the regular part of the analytic continuation: specific methods have to be used (see later)
Singularities of ζ_A

- A complete determination of the meromorphic structure of some zeta functions in the complex plane can be also obtained by means of the Dixmier trace and the Wodzicki residue.

- Missing for full description of the singularities: residua of all poles.

- As for the regular part of the analytic continuation: specific methods have to be used (see later).

- Proposition. Under the conditions of existence of the zeta function of A, given above, and being the symbol $a(x, \xi)$ of the operator A analytic in ξ^{-1} at $\xi^{-1} = 0$:

$$\text{Res}_{s=s_k} \zeta_A(s) = \frac{1}{m} \text{res} A^{-s_k} = \frac{1}{m} \int_{S^* M} \text{tr} a_{-n}^{-s_k}(x, \xi) d^{n-1} \xi$$
Singularities of ζ_A

A complete determination of the meromorphic structure of some zeta functions in the complex plane can be also obtained by means of the Dixmier trace and the Wodzicki residue.

Missing for full description of the singularities: residua of all poles

As for the regular part of the analytic continuation: specific methods have to be used (see later)

Proposition. Under the conditions of existence of the zeta function of A, given above, and being the symbol $a(x, \xi)$ of the operator A analytic in ξ^{-1} at $\xi^{-1} = 0$:

$$\text{Res}_{s=s_k} \zeta_A(s) = \frac{1}{m} \text{res} A^{-s_k} = \frac{1}{m} \int_{S^* M} \text{tr} a_{-n}^{-s_k} (x, \xi) d^{n-1} \xi$$

Proof. The homog component of degree $-n$ of the corresp power of the principal symbol of A is obtained by the appropriate derivative of a power of the symbol with respect to ξ^{-1} at $\xi^{-1} = 0$:

$$a_{-n}^{-s_k} (x, \xi) = \left(\frac{\partial}{\partial \xi^{-1}} \right)^k \left[\xi^{n-k} a^{(k-n)/m} (x, \xi) \right] \bigg|_{\xi^{-1}=0}^{\xi^{-n}}$$
Multipl or N-Comm Anomaly, or Defect

Given A, B, and AB ψ DOs, even if $ζ_A$, $ζ_B$, and $ζ_{AB}$ exist, it turns out that, in general,

$$\det_ζ(AB) \neq \det_ζ A \det_ζ B$$
Given A, B, and AB ψ DOs, even if $ζ_A$, $ζ_B$, and $ζ_{AB}$ exist, it turns out that, in general,

$$\text{det}_ζ(AB) \neq \text{det}_ζ A \text{det}_ζ B$$

The multiplicative (or noncommutative) anomaly (defect) is defined as

$$δ(A, B) = \ln \left[\frac{\text{det}_ζ(AB)}{\text{det}_ζ A \text{det}_ζ B} \right] = -ζ'_{AB}(0) + ζ'_A(0) + ζ'_B(0)$$
Multipl or N-Comm Anomaly, or Defect

- Given A, B, and AB ψDOs, even if $ζ_A$, $ζ_B$, and $ζ_{AB}$ exist, it turns out that, in general,

$$\det_ζ(AB) \neq \det_ζ A \det_ζ B$$

- The multiplicative (or noncommutative) anomaly (defect) is defined as

$$δ(A, B) = \ln \left[\frac{\det_ζ(AB)}{\det_ζ A \det_ζ B} \right] = -ζ'_{AB}(0) + ζ'_A(0) + ζ'_B(0)$$

- Wodzicki formula

$$δ(A, B) = \text{res} \left\{ \left[\ln σ(A, B) \right]^2 \right\} \over 2 \text{ord } A \text{ ord } B \left(\text{ord } A + \text{ord } B \right)$$

where

$$σ(A, B) = A^{\text{ord } B} B^{\text{ord } A}$$
In the path integral formulation

\[\int [d\Phi] \exp \left\{ - \int d^Dx \left[\Phi^\dagger(x) \Phi(x) + \cdots \right] \right\} \]

Gaussian integration: \[\rightarrow \quad \det (\)^{\pm} \]

\[
\begin{pmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
A \\
B
\end{pmatrix}
\]

\[\det(AB) \quad \text{or} \quad \det A \cdot \det B \quad ? \]
Consequences of the Multipl Anomaly

In the path integral formulation

\[\int [d\Phi] \exp \left\{ - \int d^D x \left[\Phi^\dagger(x)(\ldots)\Phi(x) + \cdots \right] \right\} \]

Gaussian integration:

\[\rightarrow \quad \det(\ldots)^\pm \]

\[\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \rightarrow \begin{pmatrix} A \\ B \end{pmatrix} \]

\[\det(AB) \quad \text{or} \quad \det A \cdot \det B \quad ? \]

In a situation where a superselection rule exists, \(AB \) has no sense (much less its determinant):

\[\Rightarrow \quad \det A \cdot \det B \]
Consequences of the Multipl Anomaly

In the path integral formulation

\[\int [d\Phi] \exp \left\{ - \int d^D x \left[\Phi^\dagger(x)(\) \Phi(x) + \cdots \right] \right\} \]

Gaussian integration: \(\rightarrow \) \(\det \ (\)^\pm \)

\[
\begin{pmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{pmatrix}
\rightarrow
\begin{pmatrix}
A \\
B
\end{pmatrix}
\]

\(\det(AB) \) \quad or \quad \det A \cdot \det B \quad ?

In a situation where a superselection rule exists, \(AB \) has no sense (much less its determinant): \(\Rightarrow \) \(\det A \cdot \det B \)

But if diagonal form obtained after change of basis (diag. process), the preserved quantity is: \(\Rightarrow \) \(\det(AB) \)
The Chowla-Selberg Formula (CS)

The Chowla-Selberg Formula (CS)

The Chowla-Selberg Formula (CS)

The Chowla-Selberg Formula (CS)

The Chowla-Selberg Formula (CS)

The Chowla-Selberg Formula (CS)

The Chowla-Selberg Formula (CS)

- B.H. Gross, On the periods of abelian integrals and a formula of Chowla and Selberg, Inv. Math. 45 (1978) 193-211
The Chowla-Selberg Formula (CS)

- B.H. Gross, On the periods of abelian integrals and a formula of Chowla and Selberg, Inv. Math. 45 (1978) 193-211

- P. Deligne, Valeurs de fonctions L et periodes d’integrales, PSPM 33 (1979) 313-346
Lerch (1897):

\[\sum_{\lambda=1}^{[D]} \left(\frac{D}{\lambda} \right) \log \Gamma \left(\frac{\lambda}{D} \right) = h \log |D| - \frac{h}{3} \log (2\pi) - \sum_{(a,b,c)} \log a \]

\[+ \frac{2}{3} \sum_{(a,b,c)} \log \left[\theta_1'(0|\alpha)\theta_1'(0|\beta) \right] \]

\(D \) discriminant, \(\theta_1' \sim \eta^3 \)

\(h \) class number of binary quadratic forms \((a, b, c)\)
History

Lerch (1897):

\[
\sum_{\lambda=1}^{\lfloor D \rfloor} \left(\frac{D}{\lambda} \right) \log \Gamma \left(\frac{\lambda}{D} \right) = h \log |D| - \frac{h}{3} \log(2\pi) - \sum_{(a,b,c)} \log a
\]

\[
+ \frac{2}{3} \sum_{(a,b,c)} \log \left[\theta_1'(0|\alpha)\theta_1'(0|\beta) \right]
\]

\(D \) discriminant, \(\theta_1' \sim \eta^3 \)

\(h \) class number of binary quadratic forms \((a, b, c)\)

Eta evaluations
Dedekind eta function for \(\text{Im} (\tau) > 0 \)

\[
\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n), \quad q := e^{2\pi i \tau}
\]

It is a 24-th root of the discriminant function \(\Delta(\tau) \) of an elliptic curve \(\mathbb{C}/L \) from a lattice \(L = \{a\tau + b \mid a, b \in \mathbb{Z}\} \)

\[
\Delta(\tau) = (2\pi)^{12} q \prod_{n=1}^{\infty} (1 - q^n)^{24}
\]
The C-S formula gives the value of a product of eta functions.
Properties & Recent Results

⇒ The C-S formula gives the value of a product of eta functions

⇒ If there is only one form in the class, it yields the value of a single eta function in terms of gamma functions
Properties & Recent Results

⇒ The C-S formula gives the value of a product of eta functions

⇒ If there is only one form in the class, it yields the value of a single eta function in terms of gamma functions

⇒ Long series of improvements: Kaneko (90), Nakajima and Taguchi (91), Williams et al. (95)
The C-S formula gives the value of a product of eta functions.

If there is only one form in the class, it yields the value of a single eta function in terms of gamma functions.

Long series of improvements: Kaneko (90), Nakajima and Taguchi (91), Williams et al. (95).

In the last 5 years the C-S formula has been ‘broken’ to isolate the eta functions: Williams, van Poorten, Chapman, Hart.
Properties & Recent Results

⇒ The C-S formula gives the value of a product of eta functions

⇒ If there is only one form in the class, it yields the value of a single eta function in terms of gamma functions

⇒ Long series of improvements: Kaneko (90), Nakajima and Taguchi (91), Williams et al. (95)

⇒ In the last 5 years the C-S formula has been ‘broken’ to isolate the eta functions: Williams, van Poorten, Chapman, Hart

Properties & Recent Results

- The C-S formula gives the value of a product of eta functions.

- If there is only one form in the class, it yields the value of a single eta function in terms of gamma functions.

- Long series of improvements: Kaneko (90), Nakajima and Taguchi (91), Williams et al. (95).

- In the last 5 years the C-S formula has been ‘broken’ to isolate the eta functions: Williams, van Poorten, Chapman, Hart.

Basic strategies

- **Jacobi’s identity** for the \(\theta \)-function

\[
\theta_3(z, \tau) := 1 + 2 \sum_{n=1}^{\infty} q^{n^2} \cos(2n\tau z), \quad q := e^{i\pi \tau}, \ \tau \in \mathbb{C}
\]

\[
\theta_3(z, \tau) = \frac{1}{\sqrt{-i\tau}} e^{z^2/i\pi \tau} \theta_3 \left(\frac{z}{\tau} | \frac{-1}{\tau} \right)
\]

equivalently:

\[
\sum_{n=-\infty}^{\infty} e^{-(n+z)^2t} = \sqrt{\frac{\pi}{t}} \sum_{n=0}^{\infty} e^{-\frac{\pi^2 n^2}{t}} \cos(2\pi n z), \quad z, t \in \mathbb{C}, |\text{Re } t| > 0
\]
Basic strategies

- **Jacobi’s identity** for the θ–function

\[
\theta_3(z, \tau) := 1 + 2 \sum_{n=1}^{\infty} q^n \cos(2nz), \quad q := e^{i\pi \tau}, \quad \tau \in \mathbb{C}
\]

\[
\theta_3(z, \tau) = \frac{1}{\sqrt{-i\tau}} e^{z^2/i\pi \tau} \theta_3 \left(\frac{z}{\tau} | \frac{-1}{\tau} \right)
\]

equivalently:

\[
\sum_{n=-\infty}^{\infty} e^{-(n+z)^2t} = \sqrt{\frac{\pi}{t}} \sum_{n=0}^{\infty} e^{-\frac{\pi^2 n^2}{t}} \cos(2\pi nz), \quad z, t \in \mathbb{C}, \quad \text{Re} \ t > 0
\]

- Higher dimensions: **Poisson summ formula** (Riemann)

\[
\sum_{\vec{n} \in \mathbb{Z}^p} f(\vec{n}) = \sum_{\vec{m} \in \mathbb{Z}^p} \tilde{f}(\vec{m})
\]

\tilde{f} Fourier transform

[Gerbert + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]
Basic strategies

- **Jacobi’s identity** for the θ–function

 \[\theta_3(z, \tau) := 1 + 2 \sum_{n=1}^{\infty} q^n \cos(2nz), \quad q := e^{i\pi \tau}, \quad \tau \in \mathbb{C} \]

 \[\theta_3(z, \tau) = \frac{1}{\sqrt{-i\tau}} e^{z^2/i\pi \tau} \theta_3 \left(\frac{z}{\tau} \bigg| \frac{-1}{\tau} \right) \]

 equivalently:

 \[
 \sum_{n=-\infty}^{\infty} e^{-(n+z)^2 t} = \sqrt{\frac{\pi}{t}} \sum_{n=0}^{\infty} e^{-\frac{n^2}{t}} \cos(2\pi nz), \quad z, t \in \mathbb{C}, \quad \text{Re} \ t > 0
 \]

- Higher dimensions: **Poisson summ formula** (Riemann)

 \[
 \sum_{\vec{n} \in \mathbb{Z}^p} f(\vec{n}) = \sum_{\vec{m} \in \mathbb{Z}^p} \tilde{f}(\vec{m})
 \]

 \tilde{f} Fourier transform

 [Gelbart + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]

- **Truncated sums** \rightarrow asymptotic series
Consider the zeta function (Re $s > p/2$, $A > 0$, Re $q > 0$)

\[
\zeta_{A, \vec{c}, q}(s) = \sum_{\vec{n} \in \mathbb{Z}^p} \left[\frac{1}{2} (\vec{n} + \vec{c})^T A (\vec{n} + \vec{c}) + q \right]^{-s} = \sum_{\vec{n} \in \mathbb{Z}^p} \left[Q (\vec{n} + \vec{c}) + q \right]^{-s}
\]

prime: point $\vec{n} = \vec{0}$ to be excluded from the sum

(inescapable condition when $c_1 = \cdots = c_p = q = 0$)

\[
Q (\vec{n} + \vec{c}) + q = Q(\vec{n}) + L(\vec{n}) + \bar{q}
\]
Consider the zeta function \((\Re s > p/2, A > 0, \Re q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \sum'_{\vec{n} \in \mathbb{Z}^p} \left[\frac{1}{2} \left(\vec{n} + \vec{c} \right)^T A \left(\vec{n} + \vec{c} \right) + q \right]^{-s} = \sum'_{\vec{n} \in \mathbb{Z}^p} [Q \left(\vec{n} + \vec{c} \right) + q]^{-s}
\]

prime: point \(\vec{n} = \vec{0}\) to be excluded from the sum

(inescapable condition when \(c_1 = \cdots = c_p = q = 0\))

\[
Q \left(\vec{n} + \vec{c} \right) + q = Q(\vec{n}) + L(\vec{n}) + \bar{q}
\]

Case \(q \neq 0 (\Re q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \frac{(2\pi)^{p/2}q^{p/2-s}}{\sqrt{\det A}} \Gamma(s - p/2) \frac{\Gamma(s)}{\Gamma(s)} + \frac{2^{s/2+p/4+2}\pi^s q^{-s/2+p/4}}{\sqrt{\det A} \Gamma(s)}
\]

\[
\times \sum'_{\vec{m} \in \mathbb{Z}_1^{p}} \cos(2\pi \vec{m} \cdot \vec{c}) \left(\vec{m}^T A^{-1} \vec{m} \right)^{s/2-p/4} K_{p/2-s} \left(2\pi \sqrt{2q \vec{m}^T A^{-1} \vec{m}} \right)
\]

[EC1]
Consider the zeta function \((\text{Re } s > p/2, A > 0, \text{Re } q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \sum'_{\vec{n} \in \mathbb{Z}^p} \left[\frac{1}{2} (\vec{n} + \vec{c})^T A (\vec{n} + \vec{c}) + q \right]^{-s} = \sum'_{\vec{n} \in \mathbb{Z}^p} [Q (\vec{n} + \vec{c}) + q]^{-s}
\]

Prime: point \(\vec{n} = \vec{0}\) to be excluded from the sum

(inescapable condition when \(c_1 = \cdots = c_p = q = 0\))

\[
Q (\vec{n} + \vec{c}) + q = Q(\vec{n}) + L(\vec{n}) + \bar{q}
\]

Case \(q \neq 0 (\text{Re } q > 0)\)

\[
\zeta_{A,\vec{c},q}(s) = \frac{(2\pi)^{p/2} q^{p/2-s}}{\sqrt{\text{det } A}} \frac{\Gamma(s - p/2)}{\Gamma(s)} + \frac{2^{s/2+p/4+2\pi^s q^{-s/2+p/4}}}{\sqrt{\text{det } A} \Gamma(s)}
\]

\[\times \sum'_{\vec{m} \in \mathbb{Z}^{p}_{1/2}} \cos(2\pi \vec{m} \cdot \vec{c}) (\vec{m}^T A^{-1} \vec{m})^{s/2-p/4} K_{p/2-s} \left(2\pi \sqrt{2q \vec{m}^T A^{-1} \vec{m}}\right)
\]

Pole: \(s = p/2\) \hspace{1cm} **Residue:**

\[
\text{Res}_{s=p/2} \zeta_{A,\vec{c},q}(s) = \frac{(2\pi)^{p/2}}{\Gamma(p/2)} (\text{det } A)^{-1/2}
\]
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane
- Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane
- Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua—explicitly
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane.

Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua—explicitly.

Only condition on matrix A: corresponds to (non negative) quadratic form, Q. Vector \vec{c} arbitrary, while q is (to start) a non-neg constant.
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane.

Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua—explicitly.

Only condition on matrix A: corresponds to (non negative) quadratic form, Q. Vector \vec{c} arbitrary, while q is (to start) a non-neg constant.

K_ν modified Bessel function of the second kind and the subindex $1/2$ in $\mathbb{Z}_{1/2}^p$ means that only half of the vectors $\vec{m} \in \mathbb{Z}^p$ participate in the sum. E.g., if we take an $\vec{m} \in \mathbb{Z}^p$ we must then exclude $-\vec{m}$.

[simple criterion: one may select those vectors in $\mathbb{Z}^p \backslash \{\vec{0}\}$ whose first non-zero component is positive]
Gives (analytic cont of) multidimensional zeta function in terms of an exponentially convergent multiseries, valid in the whole complex plane.

Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua—explicitly.

Only condition on matrix A: corresponds to (non negative) quadratic form, Q. Vector \vec{c} arbitrary, while q is (to start) a non-neg constant.

K_ν modified Bessel function of the second kind and the subindex $1/2$ in $\mathbb{Z}_{1/2}^p$ means that only half of the vectors $\vec{m} \in \mathbb{Z}^p$ participate in the sum. E.g., if we take an $\vec{m} \in \mathbb{Z}^p$ we must then exclude $-\vec{m}$.

[simple criterion: one may select those vectors in $\mathbb{Z}^p \setminus \{\vec{0}\}$ whose first non-zero component is positive]

Case $c_1 = \cdots = c_p = q = 0$ [true extens of CS, diag subcase]

\[
\zeta_{A_p}(s) = \frac{2^{1+s}}{\Gamma(s)} \sum_{j=0}^{p-1} (\det A_j)^{-1/2} \left[\pi^{j/2} a_{p-j}^{j/2-s} \Gamma \left(s - \frac{j}{2} \right) \zeta_R(2s-j) + 4\pi^s a_{p-j}^{-\frac{j}{2}-\frac{s}{2}} \sum_{n=1}^{\infty} \sum_{\vec{m}_j \in \mathbb{Z}^j} n^{j/2-s} \left(\vec{m}_j^t A_j^{-1} \vec{m}_j \right)^{s/2-j/4} K_{j/2-s} \left(2\pi n \sqrt{a_{p-j} \vec{m}_j^t A_j^{-1} \vec{m}_j} \right) \right]
\]
QFT in s-t with non-comm toroidal part

D–dim non-commut manifold: $M = \mathbb{R}^{1,d} \otimes T^p_\theta$, $D = d + p + 1$

T^p_θ a p–dim non-commutative torus: $[x_j, x_k] = i\theta\sigma_{jk}$

σ_{jk} a real, nonsingular, antisymmetric matrix of ± 1 entries

θ the non-commutative parameter.
QFT in s-t with non-comm toroidal part

- \(D \)-dim non-commut manifold: \(M = \mathbb{R}^{1,d} \otimes T^p_\theta \), \(D = d + p + 1 \)
- \(T^p_\theta \) a \(p \)-dim non-commutative torus: \([x_j, x_k] = i\theta \sigma_{jk} \)
- \(\sigma_{jk} \) a real, nonsingular, antisymmetric matrix of \(\pm 1 \) entries
- \(\theta \) the non-commutative parameter.

- Interest recently, in connection with \(M \)-theory & string theory
 [Connes, Douglas, Seiberg, Cheung, Chu, Chomerus, Ardalan, ...]
QFT in s-t with non-comm toroidal part

- D–dim non-commut manifold: $M = \mathbb{R}^{1,d} \otimes \mathbb{T}_\theta^p$, $D = d + p + 1$

\mathbb{T}_θ^p a p–dim non-commutative torus: $[x_j, x_k] = i \theta \sigma_{jk}$

σ_{jk} a real, nonsingular, antisymmetric matrix of ± 1 entries

θ the non-commutative parameter.

- Interest recently, in connection with M–theory & string theory

[Connes, Douglas, Seiberg, Cheung, Chu, Chomerus, Ardalan, …]

- Unified treatment: only one zeta function, nature of field (bosonic, fermionic) as a parameter, together with # of compact, noncompact, and noncommutative dimensions

$$\zeta_\alpha(s) = \frac{V \Gamma(s - (d + 1)/2)}{(4\pi)^{(d+1)/2} \Gamma(s)} \sum_{\vec{n}\in\mathbb{Z}^p} \left[1 + \Lambda \theta^2 - 2\alpha Q(\vec{n})^{-\alpha}\right]^{(d+1)/2-s}$$

$\alpha = 2$ bos, $\alpha = 3$ ferm, $V = Vol(\mathbb{R}^{d+1})$ of non-compact part

$Q(\vec{n}) = \sum_{j=1}^p a_j n_j^2$ a diag quadratic form, $R_j = a_j^{-1/2}$ compactific radii
After some calculations,

\[\zeta_\alpha(s) = \frac{V}{(4\pi)^{(d+1)/2}} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - \frac{d+1}{2})}{l! \Gamma(s)} \left(-\Lambda \theta^{2-2\alpha}\right)^l \zeta_{Q,\vec{0},0}(s + \alpha l - \frac{d + 1}{2}) \]

for all radii equal to \(R \), with \(I(\vec{n}) = \sum_{j=1}^{p} n_j^2 \),

\[\zeta_\alpha(s) = \frac{V}{(4\pi)^{(d+1)/2} R^{d+1-2s}} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - \frac{d+1}{2})}{l! \Gamma(s)} \left(-\Lambda \theta^{2-2\alpha}\right)^l \zeta_{E}(s + \alpha l - \frac{d + 1}{2}) \]

where we use the notation \(\zeta_{E}(s) := \zeta_{I,\vec{0},0}(s) \)

e.g., the Epstein zeta function for the standard quadratic form
After some calculations,

\[
\zeta_{\alpha}(s) = \frac{V}{(4\pi)^{(d+1)/2}} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - \frac{d+1}{2})}{l! \Gamma(s)} \left(-\Lambda \theta^{2-2\alpha} \right)^l \zeta_{Q,\vec{0},0}(s + \alpha l - \frac{d+1}{2})
\]

for all radii equal to \(R \), with \(I(\vec{n}) = \sum_{j=1}^{p} n_j^2 \),

\[
\zeta_{\alpha}(s) = \frac{V}{(4\pi)^{(d+1)/2} R^{d+1-2s}} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - \frac{d+1}{2})}{l! \Gamma(s)} \left(-\Lambda \theta^{2-2\alpha} \right)^l \zeta_{E}(s + \alpha l - \frac{d+1}{2})
\]

where we use the notation \(\zeta_{E}(s) := \zeta_{I,\vec{0},0}(s) \)

e.g., the Epstein zeta function for the standard quadratic form

Rich pole structure: pole of Epstein zf at

\[s = \frac{p}{2} - \alpha k + \frac{(d+1)}{2} = \frac{D}{2} - \alpha k \]

combined with poles of \(\Gamma \), yields a rich pattern of singul for \(\zeta_{\alpha}(s) \)
After some calculations,

\[
\zeta_\alpha(s) = \frac{V}{(4\pi)^{(d+1)/2}} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - \frac{d+1}{2})}{l! \Gamma(s)} (-\Lambda \theta^{2-2\alpha})^l \zeta_{Q,\vec{0},0}(s + \alpha l - \frac{d+1}{2})
\]

for all radii equal to \(R \), with \(I(\vec{n}) = \sum_{j=1}^{p} n_j^2 \),

\[
\zeta_\alpha(s) = \frac{V}{(4\pi)^{(d+1)/2}} \frac{1}{R^{d+1-2s}} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - \frac{d+1}{2})}{l! \Gamma(s)} (-\Lambda \theta^{2-2\alpha})^l \zeta_E(s + \alpha l - \frac{d+1}{2})
\]

where we use the notation \(\zeta_E(s) := \zeta_{I,\vec{0},0}(s) \)
e.g., the Epstein zeta function for the standard quadratic form

Rich pole structure: pole of Epstein zf at

\[
s = \frac{p}{2} - \alpha k + (d + 1)/2 = D/2 - \alpha k,
\]

combined with poles of \(\Gamma \), yields a rich pattern of singul for \(\zeta_\alpha(s) \)

Classify the different possible cases according to the values of \(d \) and \(D = d + p + 1 \). We obtain, at \(s = 0 \):
For $d = 2k$
\[
\begin{cases}
 \text{if } D \neq \frac{\dot{2}}{2} \alpha & \Rightarrow \zeta_{\alpha}(0) = 0 \\
 \text{if } D = \frac{\dot{2}}{2} \alpha & \Rightarrow \zeta_{\alpha}(0) = \text{finite}
\end{cases}
\]

For $d = 2k - 1$
\[
\begin{cases}
 \text{if } D \neq \frac{\dot{2}}{2} \alpha & \begin{cases}
 \text{finite, for } l \leq k \\
 0, \quad \text{for } l > k
 \end{cases} \Rightarrow \zeta_{\alpha}(0) = \text{finite} \\
 \text{if } D = 2\alpha l & \begin{cases}
 \text{pole, for } l \leq k \\
 \text{finite, for } l > k
 \end{cases} \Rightarrow \zeta_{\alpha}(0) = \text{pole}
\end{cases}
\]

- Pole structure of the zeta function $\zeta_{\alpha}(s)$, at $s = 0$, according to the different possible values of d and D ($\frac{\dot{2}}{2} \alpha$ means multiple of 2α)
For $d = 2k$

\[
\begin{cases}
\text{if } D \neq \frac{2\alpha}{2} & \Rightarrow \zeta_{\alpha}(0) = 0 \\
\text{if } D = \frac{2\alpha}{2} & \Rightarrow \zeta_{\alpha}(0) = \text{finite}
\end{cases}
\]

For $d = 2k - 1$

\[
\begin{cases}
\text{if } D \neq \frac{2\alpha}{2} & \begin{cases}
\text{finite, for } l \leq k \\
0, \text{ for } l > k
\end{cases} \Rightarrow \zeta_{\alpha}(0) = \text{finite} \\
\text{if } D = \frac{2\alpha}{2} & \begin{cases}
\text{pole, for } l \leq k \\
\text{finite, for } l > k
\end{cases} \Rightarrow \zeta_{\alpha}(0) = \text{pole}
\end{cases}
\]

– Pole structure of the zeta function $\zeta_{\alpha}(s)$, at $s = 0$, according to the different possible values of d and D ($\frac{2\alpha}{2}$ means multiple of 2α)

\Rightarrow Explicit analytic continuation of $\zeta_{\alpha}(s)$, $\alpha = 2, 3$, & specific pole structure
\[\zeta_\alpha(s) = \frac{2^{s-d} V}{(2\pi)^{(d+1)/2} \Gamma(s)} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - (d + 1)/2)}{l! \Gamma(s + \alpha l - (d + 1)/2)} (-2^\alpha \Lambda^2 \theta^{2-2\alpha})^l \sum_{j=0}^{p-1} (\det A_j)^{-\frac{1}{2}} \]

\times \left[\frac{\pi^{j/2} a_{p-j}}{a_{p-j}} \right] \Gamma(s + \alpha l - (d + j + 1)/2) \zeta_R(2s + 2\alpha l - d - j - 1)

+ 4\pi^{s+\alpha l-(d+1)/2} a_{p-j}^{-\alpha l/2-(d+j+1)/4} \sum_{n=1}^{\infty} \sum_{\vec{m}_j \in \mathbb{Z}^j} ' n_{(d+j+1)/2-s-\alpha l}

\times \left(\vec{m}_j A_j^{-1} \vec{m}_j \right)^{s+\alpha l/2-(d+j+1)/4} K_{(d+j+1)/2-s-\alpha l} \left(2\pi n \sqrt{a_{p-j} \vec{m}_j A_j^{-1} \vec{m}_j} \right) \]
\[\zeta_\alpha(s) = \frac{2^{s-d} V}{(2\pi)^{(d+1)/2} \Gamma(s)} \sum_{l=0}^{\infty} \frac{\Gamma(s + l - (d + 1)/2)}{l! \Gamma(s + \alpha l - (d + 1)/2)} (-2^{\alpha} \Lambda^{2-2\alpha})^l \sum_{j=0}^{p-1} (\det A_j)^{-\frac{1}{2}} \]

\[
\times \left[\pi^{j/2} a_{p-j}^{-(s-\alpha l + (d+j+1)/2)} \Gamma(s + \alpha l - (d + j + 1)/2) \zeta_R(2s + 2\alpha l - d - j - 1) \right. \\
+ 4\pi^{s+\alpha l -(d+1)/2} a_{p-j}^{-(s+\alpha l)/2 -(d+j+1)/4} \sum_{n=1}^{\infty} \sum_{\bar{m}_j \in \mathbb{Z}^j} \tilde{\nu}^{(d+j+1)/2-s-\alpha l}
\left. \times \left(\bar{m}_j^t A_j^{-1} \bar{m}_j \right)^{(s+\alpha l)/2 -(d+j+1)/4} K_{(d+j+1)/2-s-\alpha l} \right]

\[
\times \left(2\pi n \sqrt{a_{p-j} \bar{m}_j^t A_j^{-1} \bar{m}_j} \right) \]

<table>
<thead>
<tr>
<th>p \ D</th>
<th>even</th>
<th>odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>odd</td>
<td>(1a) pole / finite ((l \geq l_1))</td>
<td>(2a) pole / pole</td>
</tr>
<tr>
<td>even</td>
<td>(1b) double pole / pole ((l \geq l_1, l_2))</td>
<td>(2b) pole / double pole ((l \geq l_2))</td>
</tr>
</tbody>
</table>

- **General pole structure** of \(\zeta_\alpha(s) \), for the possible values of \(D \) and \(p \) being odd or even. **Magenta**, type of behavior corresponding to lower values of \(l \); behavior in **blue** corresponds to larger values of \(l \).
Quantum Vacuum Fluct’s & the CC

The main issue:

energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

$$\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu}$$
The main issue:

energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum
Quantum Vacuum Fluct’s & the CC

The main issue:

energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor \(\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \)

Appears on the rhs of Einstein’s equations:

\[
R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu})
\]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum

Equivalent to a cosmological constant \(\lambda = 8\pi G \mathcal{E} \)
The main issue: energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum

Equivalent to a cosmological constant \(\lambda = 8\pi G \mathcal{E} \)

Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

\[\lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]
Quantum Vacuum Fluct’s & the CC

The main issue:

energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

$$\langle T_{\mu\nu} \rangle \equiv -\mathcal{E}g_{\mu\nu}$$

Appears on the rhs of Einstein’s equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E}g_{\mu\nu})$$

It affects cosmology: $$\tilde{T}_{\mu\nu}$$ excitations above the vacuum

Equivalent to a cosmological constant

$$\lambda = 8\pi G \mathcal{E}$$

Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

$$\lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3$$

Idea: zero point fluctuations can contribute to the cosmological constant

Ya.B. Zeldovich ’68
Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_{n} \omega_n, \quad \omega = k^2 + \frac{m^2}{\hbar^2}, \quad k = \frac{2\pi}{\lambda} \]
Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

Evaluating in a box and putting a cut-off at maximum \(k_{\text{max}} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{\text{Planck}}^4}{16\pi^2} \sim 10^{123} \rho_{\text{obs}} \]

kind of a modern (and thick!) aether

R. Caldwell, S. Carroll, ...
Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2 / \hbar^2, \quad k = 2\pi / \lambda \]

Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123}\rho_{obs} \]

kind of a modern (and thick!) aether \(\text{R. Caldwell, S. Carroll, ...} \)

Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]
Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = 2\pi/\lambda \]

Evaluating in a box and putting a cut-off at maximum \(k_{\text{max}} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{\text{Planck}}^4}{16\pi^2} \sim 10^{123} \rho_{\text{obs}} \]

kind of a modern (and thick!) aether

R. Caldwell, S. Carroll, ...

Observational tests see nothing (or very little) of it:

\[\Rightarrow \text{ (new) cosmological constant problem} \]

Very difficult to solve and we do not address this question directly

[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]
Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]

kind of a modern (and thick!) aether

R. Caldwell, S. Carroll, ...

Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]

Very difficult to solve and we do not address this question directly

[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]

What we do consider —with relative success in some different approaches— is the additional contribution to the cc coming from the non-trivial topology of space or from specific boundary conditions imposed on braneworld models:

\[\implies \text{kind of cosmological Casimir effect} \]
Cosmo-Topological Casimir Effect

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2}mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens
Cosmo-Topological Casimir Effect

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2}mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:
Cosmo-Topological Casimir Effect

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2}mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe—in some reasonable models involving:

(a) small and large compactified scales
Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs.

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2}mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:

(a) small and large compactified scales
(b) dS & AdS worldbranes
Cosmo-Topological Casimir Effect

Assuming one will be able to prove (in the future) that the ground value of the cc is zero (as many had suspected until recently), we will be left with this incremental value coming from the topology or BCs

* L. Parker & A. Raval, VCDM, vacuum energy density
* C.P. Burgess et al., hep-th/0606020 & 0510123: Susy Large Extra Dims (SLED), two 10^{-2} mm dims, bulk vs brane Susy breaking scales
* T. Padmanabhan, gr-qc/0606061: Holographic Perspective, CC is an intg const, no response of gravity to changes in bulk vac energy dens

We show (with different examples) that this value acquires the correct order of magnitude — corresponding to the one coming from the observed acceleration in the expansion of our universe — in some reasonable models involving:

- (a) small and large compactified scales
- (b) dS & AdS worldbranes
- (c) supergraviton theories (discret dims, deconstr)
A. Simple model: large & small dim’s

Space-time: $\mathbb{R}^{d+1} \times T^p \times T^q$, $\mathbb{R}^{d+1} \times T^p \times S^q$, ...
A. Simple model: large & small dim’s

- Space-time: \(\mathbb{R}^{d+1} \times \mathbb{T}^p \times \mathbb{T}^q, \quad \mathbb{R}^{d+1} \times \mathbb{T}^p \times \mathbb{S}^q, \quad \ldots \)

- Scalar field, \(\phi \), pervading the universe (\(\hbar = c = 1 \))

\[
S = \frac{1}{2} \int d^4x \sqrt{-\text{g}} \left[g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi^* + (m^2 + \xi R) \phi \phi^* \right]
\]
A. Simple model: large & small dim’s

- Space-time: $\mathbb{R}^{d+1} \times T^p \times T^q$, $\mathbb{R}^{d+1} \times T^p \times S^q$, ...

- Scalar field, ϕ, pervading the universe ($\hbar = c = 1$)

\[
S = \frac{1}{2} \int d^4x \sqrt{-g} \left[g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi^* + (m^2 + \xi R)\phi\phi^* \right]
\]

- ρ_ϕ contribution to ρ_V from this field

\[
\rho_\phi = \frac{1}{2} \sum_i \lambda_i = \frac{1}{2} \sum_k \frac{1}{\mu} \left(k^2 + M^2 \right)^{1/2}
\]
A. Simple model: large & small dim’s

- Space-time: $\mathbb{R}^{d+1} \times \mathbb{T}^p \times \mathbb{T}^q$, $\mathbb{R}^{d+1} \times \mathbb{T}^p \times \mathbb{S}^q$, …

- Scalar field, ϕ, pervading the universe ($\hbar = c = 1$)

$$S = \frac{1}{2} \int d^4x \sqrt{-g} \left[g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi^* + (m^2 + \xi R)\phi\phi^* \right]$$

- ρ_ϕ contribution to ρ_V from this field

$$\rho_\phi = \frac{1}{2} \sum_i \lambda_i = \frac{1}{2} \sum_k \left(\frac{1}{\mu} \left(k^2 + M^2 \right) \right)^{1/2}$$

- \sum_i and \sum_k are generalized sums, μ mass-dim parameter
A. Simple model: large & small dim’s

- **Space-time:** $\mathbb{R}^{d+1} \times \mathbb{T}^p \times \mathbb{T}^q$, $\mathbb{R}^{d+1} \times \mathbb{T}^p \times \mathbb{S}^q$, …

- **Scalar field,** ϕ, pervading the universe ($\hbar = c = 1$)

$$ S = \frac{1}{2} \int d^4x \sqrt{-g} \left[g^{\mu \nu} \partial_\mu \phi \partial_\nu \phi^* + (m^2 + \xi R) \phi \phi^* \right] $$

- **ρ_ϕ** contribution to ρ_V from this field

$$ \rho_\phi = \frac{1}{2} \sum_i \lambda_i = \frac{1}{2} \sum_k \frac{1}{\mu} \left(k^2 + M^2 \right)^{1/2} $$

- \sum_i and \sum_k are generalized sums, μ mass-dim parameter

- **M** effective mass term, m arbitrarily small

(a tiny mass for the field cannot be excluded, and fits well)

* A. Chodos & E. Myers, ’85–’86
Some recent developments

Braneworld models based on a 6D SUGRA [Gibbons, 2003]
Some recent developments

- Braneworld models based on a 6D SUGRA [Gibbons, 2003]

- But we work with 4D counterpart, because of lack of formulation of heat-kernel coefficients for conical singularities in 6D (！)
Some recent developments

- Braneworld models based on a 6D SUGRA [Gibbons, 2003]

- But we work with 4D counterpart, because of lack of formulation of heat-kernel coefficients for conical singularities in 6D (!)

- Supergravity inspired models where the size of the compactified internal space is not fixed classically: may behave as a volume modulus in the 4D effective theory
Some recent developments

- **Braneworld models** based on a 6D SUGRA [Gibbons, 2003]

- But we work with 4D counterpart, because of lack of formulation of heat-kernel coefficients for conical singularities in 6D (!)

- Supergravity inspired models where the size of the compactified internal space is not fixed classically: may behave as a volume modulus in the 4D effective theory

- To fix this volume modulus look for additional mechanisms: in [Minamitsuji-Naylor-Sasaki, 2006] Casimir corrections for perturbs of a massless, minimally coupled bulk scalar field
Some recent developments

- Braneworld models based on a 6D SUGRA [Gibbons, 2003]
- But we work with 4D counterpart, because of lack of formulation of heat-kernel coefficients for conical singularities in 6D (!)
- Supergravity inspired models where the size of the compactified internal space is not fixed classically: may behave as a volume modulus in the 4D effective theory
- To fix this volume modulus look for additional mechanisms: in [Minamitsuji-Naylor-Sasaki, 2006] Casimir corrections for perturbs of a massless, minimally coupled bulk scalar field
- Revised analysis of these calculations: performing strict mode sum of exact mass spectrum by zeta function methods
Some recent developments

- **Braneworld models** based on a 6D SUGRA [Gibbons, 2003]

- But we work with 4D counterpart, because of lack of formulation of heat-kernel coefficients for conical singularities in 6D (!)

- Supergravity inspired models where the size of the compactified internal space is not fixed classically: may behave as a volume modulus in the 4D effective theory

- To fix this volume modulus look for additional mechanisms: in [Minamitsuji-Naylor-Sasaki, 2006] Casimir corrections for perturbs of a massless, minimally coupled bulk scalar field

- Revised analysis of these calculations: performing strict mode sum of exact mass spectrum by zeta function methods

- We produce an exact analysis of the one-loop effective action in the 4D, alternative model [EE-Minamitsuji-Naylor, PRD 2007]
The one-loop effective potential for the volume modulus is similar to the Coleman-Weinberg potential

\[V_{4,\text{eff}} = \frac{A_4 - B_4 \ln(\mu^2 \rho_+)}{\rho_+} \]

\(\rho_+ \) characterizes the volume modulus
The one-loop effective potential for the volume modulus is similar to the Coleman-Weinberg potential

\[V_{4,\text{eff}} = \frac{A_4 - B_4 \ln(\mu^2 \rho_+)}{\rho_+} \]

\(\rho_+ \) characterizes the volume modulus

\(A_4 \) and \(B_4 \) are functions of the model parameters and the shape modulus (brane tensions)
The one-loop effective potential for the volume modulus is similar to the Coleman-Weinberg potential

\[V_{4,\text{eff}} = \frac{A_4 - B_4 \ln(\mu^2 \rho_+)}{\rho_+} \]

\(\rho_+ \) characterizes the volume modulus

- \(A_4 \) and \(B_4 \) are functions of the model parameters and the shape modulus (brane tensions)

- Stability determined by sign of \(B_4 \): heat-kernel coeff
The one-loop effective potential for the volume modulus is similar to the Coleman-Weinberg potential

\[V_{4,\text{eff}} = \frac{A_4 - B_4 \ln(\mu^2 \rho_+)}{\rho_+} \]

\(\rho_+ \) characterizes the volume modulus

- \(A_4 \) and \(B_4 \) are functions of the model parameters and the shape modulus (brane tensions)

- Stability determined by sign of \(B_4 \): heat-kernel coeff

- Phenomenological effects on the brane (eff mass of modulus, degree of hierarchy between fundamental energy scales on brane): need to know the value of \(A_4 \)
The one-loop effective potential for the volume modulus is similar to the Coleman-Weinberg potential

\[V_{4,\text{eff}} = \frac{A_4 - B_4 \ln(\mu^2 \rho_+)}{\rho_+} \]

\(\rho_+ \) characterizes the volume modulus

- \(A_4 \) and \(B_4 \) are functions of the model parameters and the shape modulus (brane tensions)

- Stability determined by sign of \(B_4 \): heat-kernel coeff

- Phenomenological effects on the brane (eff mass of modulus, degree of hierarchy between fundamental energy scales on brane): need to know the value of \(A_4 \)

- \(A_4 \) is not just related to the heat kernel: need to evaluate \(\zeta'(0) \)
The one-loop effective potential for the volume modulus is similar to the Coleman-Weinberg potential

\[V_{4, \text{eff}} = \frac{A_4 - B_4 \ln(\mu^2 \rho_+)}{\rho_+} \]

\(\rho_+ \) characterizes the volume modulus.

- \(A_4 \) and \(B_4 \) are functions of the model parameters and the shape modulus (brane tensions).

- Stability determined by sign of \(B_4 \): heat-kernel coeff

- Phenomenological effects on the brane (eff mass of modulus, degree of hierarchy between fundamental energy scales on brane): need to know the value of \(A_4 \)

- \(A_4 \) is not just related to the heat kernel: need to evaluate \(\zeta'(0) \)

- Accurate evaluation of \(A_4 \) is crucial for making physical predictions: hierarchy & CC problems
Zeta regularization

In previous work WKB approx was used. Now exact analysis of the mass spectrum for Kaluza-Klein-like modes (not standard KK modes, because of conical singularities at poles of the two-sphere on the internal dims): rugby-ball frame
Zeta regularization

In previous work WKB approx was used. Now exact analysis of the mass spectrum for Kaluza-Klein-like modes (not standard KK modes, because of conical singularities at poles of the two-sphere on the internal dims): rugby-ball frame

(a) Find the eigenvalues. (b) Derive expression for the spectral zeta function. (c) Find the effective action:
Zeta regularization

In previous work WKB approx was used. Now exact analysis of the mass spectrum for Kaluza-Klein-like modes (not standard KK modes, because of conical singularities at poles of the two-sphere on the internal dims): rugby-ball frame

(a) Find the eigenvalues. (b) Derive expression for the spectral zeta function. (c) Find the effective action:

\[\zeta(s) = \frac{1}{\Gamma(s)} \int d^2x \int d^2k \sum_{m,n} \int_0^\infty t^{s-1} \exp \left\{ - \left[k^2 + g^2 (a(m+\alpha)^2 + b(m+\alpha)|n| + cn^2 + q) \right] t \right\} \]
Zeta regularization

In previous work WKB approx was used. Now exact analysis of the mass spectrum for Kaluza-Klein-like modes (not standard KK modes, because of conical singularities at poles of the two-sphere on the internal dims): rugby-ball frame

(a) Find the eigenvalues. (b) Derive expression for the spectral zeta function. (c) Find the effective action:

\[
\zeta(s)= \frac{1}{\Gamma(s)} \int d^2 x \int d^2 k \sum_{m,n} \int_0^\infty t^{s-1} \exp\left\{ -\left[k^2 + g^2 (a(m+\alpha)^2 + b(m+\alpha)|n| + cn^2 + q) \right] t \right\}
\]

\[
a = 4, \quad b = \frac{4(1 + r)}{\kappa}, \quad c = \frac{4r}{\kappa^2}, \quad q = -1, \quad \alpha = 1/2
\]
Zeta regularization

In previous work WKB approx was used. Now exact analysis of the mass spectrum for Kaluza-Klein-like modes (not standard KK modes, because of conical singularities at poles of the two-sphere on the internal dims): rugby-ball frame

(a) Find the eigenvalues. (b) Derive expression for the spectral zeta function. (c) Find the effective action:

$$\zeta(s) = \frac{1}{\Gamma(s)} \int d^2 x \int d^2 k \sum_{m,n} \int_0^\infty t^{s-1} \exp \{ -[k^2 + g^2 (a(m+\alpha)^2 + b(m+\alpha)|n| + cn^2 + q)]t \}$$

$$a = 4, \quad b = \frac{4(1 + r)}{\kappa}, \quad c = \frac{4r}{\kappa^2}, \quad q = -1, \quad \alpha = 1/2$$

perform the \(k \)-integr after interchanging the order of integr

$$= \int d^2 x \frac{2\pi g^2 (1-s)}{s-1} \sum_{m,n} [a(m + \alpha)^2 + b(m + \alpha)|n| + cn^2 + q]^{1-s}$$
Zeta regularization

In previous work WKB approx was used. Now exact analysis of the mass spectrum for Kaluza-Klein-like modes (not standard KK modes, because of conical singularities at poles of the two-sphere on the internal dims): rugby-ball frame

(a) Find the eigenvalues. (b) Derive expression for the spectral zeta function. (c) Find the effective action:

\[
\zeta(s) = \frac{1}{\Gamma(s)} \int d^2 x \int d^2 k \sum_{m,n} \int_0^\infty t^{s-1} \exp\{-[k^2 + g^2 (a(m+\alpha)^2 + b(m+\alpha)|n| + cn^2 + q)]t\}
\]

\[
a = 4, \quad b = \frac{4(1 + r)}{\kappa}, \quad c = \frac{4r}{\kappa^2}, \quad q = -1, \quad \alpha = 1/2
\]

perform the \(k\)-integr after interchanging the order of integr

\[
= \int d^2 x \frac{2\pi g^2(1-s)}{s-1} \sum_{m,n} [a(m + \alpha)^2 + b(m + \alpha)|n| + cn^2 + q]^{1-s}
\]

where we redefine the terms:

\[
\hat{\alpha}(n) = \alpha + \frac{bn}{2a} = \frac{1}{2} + \frac{(1 + r)|n|}{2\kappa}, \quad \hat{q}(n) = -\frac{n^2}{\kappa^2}(1 - r)^2 - 1
\]
Extended binomial expansion

\[\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} [a(m + \alpha)^2 + b(m + \alpha)n + cn^2 + q]^{-s+1} \]

\[= \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} [a(m + \hat{\alpha})^2 + \hat{q}]^{-s+1} \]

\[= \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \sum_{j=0}^{\infty} \frac{\Gamma(j + s - 1)}{\Gamma(s - 1) j!} [a(m + \hat{\alpha})^2]^{1-s-j} \hat{q}^j \]
Extended binomial expansion

\[\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \left[a(m + \alpha)^2 + b(m + \alpha)n + cn^2 + q \right]^{-s+1} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \left[a(m + \hat{\alpha})^2 + \hat{\hat{q}} \right]^{-s+1} = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \sum_{j=0}^{\infty} \frac{\Gamma(j + s - 1)}{\Gamma(s - 1) j!} \left[a(m + \hat{\alpha})^2 \right]^{1-s-j} \hat{\hat{q}}^j \]

\[= \sum_{j=0}^{\infty} \sum_{n=1}^{\infty} a^{1-s-j} \frac{\Gamma(j + s - 1)}{\Gamma(s - 1) j!} \hat{\hat{q}}^j \zeta_H(2s+2j-2, \hat{\alpha}), \quad \left| \frac{\hat{q}}{a(m + \alpha)^2} \right| < 1 \]
Extended binomial expansion

\[
\sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \left[a(m + \alpha)^2 + b(m + \alpha)n + cn^2 + q \right]^{-s+1}
= \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \left[a(m + \hat{\alpha})^2 + \hat{q} \right]^{-s+1}
= \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \sum_{j=0}^{\infty} \frac{\Gamma(j + s - 1)}{\Gamma(s - 1) j!} \left[a(m + \hat{\alpha})^2 \right]^{1-s-j} \hat{q}^j
= \sum_{j=0}^{\infty} \sum_{n=1}^{\infty} a^{1-s-j} \frac{\Gamma(j + s - 1)}{\Gamma(s - 1) j!} \hat{q}^j \zeta_H(2s+2j-2, \hat{\alpha}), \quad \left| \frac{\hat{q}}{a(m + \alpha)^2} \right| < 1
\]

\[
\zeta(s)\bigg|_{n \neq 0} = \frac{g^2(1-s)}{\pi} \int d^2 x \sum_{j=0}^{\infty} G(j, s) \sum_{n=1}^{\infty} \left[\frac{n^2}{\kappa^2} (1-r)^2 + 1 \right]^j \zeta_H \left(2s+2j-2, \frac{1}{2} + \frac{1 + r}{2\kappa} n \right)
\]

\[
G(j, s) \equiv \frac{2^{-2(j+s-1)} \Gamma(s + j - 1)}{\Gamma(s) j!}
\]
Analytic continuation of the ζ function

\[
P(s) = \frac{g^{2(1-s)}}{\pi} \int d^2 x \sum_{j=0}^{\infty} G(j, s) \sum_{n=1}^{\infty} \left[\left(\frac{n^2}{\kappa^2} (1 - r)^2 + 1 \right)^j \right.
\]

\[
\times \zeta_H \left(2s + 2j - 2, \frac{1}{2} + \frac{1 + r}{2\kappa} n \right) - F(n, j; s) \]
\]
Analytic continuation of the ζ function

$$P(s) = \frac{g^{2(1-s)}}{\pi} \int d^2 x \sum_{j=0}^{\infty} G(j, s) \sum_{n=1}^{\infty} \left[\left(\frac{n^2}{\kappa^2} (1 - r)^2 + 1 \right)^j \right.$$
$$\times \zeta_H \left(2s + 2j - 2, \frac{1}{2} + \frac{1 + r}{2\kappa} n \right) - F(n, j; s) \left. \right]$$

$$\zeta(s) \bigg|_{n \neq 0} = P(s) + \sum_{j=0}^{\infty} G(j, s) \Delta(j, s), \quad \text{analogously} \quad \zeta_0(s)$$
Analytic continuation of the $ζ$ function

\[
P(s) = \frac{g^{2(1-s)}}{\pi} \int d^2x \sum_{j=0}^{\infty} G(j, s) \sum_{n=1}^{\infty} \left[\left(\frac{n^2}{\kappa^2} (1 - r)^2 + 1 \right)^j \right.
\]
\[
\times \zeta_H \left(2s + 2j - 2, \frac{1}{2} + \frac{1 + r}{2\kappa} n \right) - F(n, j; s) \right]
\]

\[
\zeta(s) \bigg|_{n \neq 0} = P(s) + \sum_{j=0}^{\infty} G(j, s) \Delta(j, s), \quad \text{analogously} \quad \zeta_0(s)
\]

\[
\Delta(j, s) = \frac{2^{-6+2j+2s} g^{2(1-s)}}{45(2j + 2s - 3) \pi} \int d^2x \kappa^{1+2s} \frac{(1 - r)^{2j}}{(1 + r)^{1+2j+2s}}
\]
\[
\times \left[\frac{w_0}{\kappa^4} \zeta_R(2s-3) + \frac{w_2(j, s)}{\kappa^2} \zeta_R(2s-1) + w_4(j, s) \zeta_R(2s+1) \right]
\]
Analytic continuation of the ζ function

$$P(s) = \frac{g^{2(1-s)}}{\pi} \int d^2x \sum_{j=0}^{\infty} G(j, s) \sum_{n=1}^{\infty} \left[\left(\frac{n^2}{\kappa^2}(1 - r)^2 + 1 \right)^j \right. \times \zeta_H \left(2s + 2j - 2, \frac{1}{2} + \frac{1 + r}{2\kappa}n \right) - F(n, j; s) \left. \right]$$

$$\zeta(s) \bigg|_{n \neq 0} = P(s) + \sum_{j=0}^{\infty} G(j, s) \Delta(j, s), \quad \text{analogously} \quad \zeta_0(s)$$

$$\Delta(j, s) = \frac{2^{-6+2j+2s} g^{2(1-s)}}{45(2j + 2s - 3) \pi} \int d^2x \, \kappa^{1+2s} \frac{(1 - r)^{2j}}{(1 + r)^{1+2j+2s}}$$

$$\times \left[\frac{w_0}{\kappa^4} \zeta_R(2s - 3) + \frac{w_2(j, s)}{\kappa^2} \zeta_R(2s - 1) + w_4(j, s) \zeta_R(2s + 1) \right]$$

⇒ Extend our analysis to the cases of

1. 6 dimensions
2. a bulk scalar field with self-interactions and other fields

in the multiplets appearing in the supergravity model