Repulsive Casimir Forces from Additional Dimensions, and GR Alternative Cosmologies

EMILIO ELIZALDE

ICE/CSIC & IEEC, UAB, Barcelona

Trento, November 6, 2009
Outline

On Einstein’s Cosmological Constant (in the Year of Galileo and Astronomy)
Outline

- On Einstein’s Cosmological Constant (in the Year of Galileo and Astronomy)
- CE and Accelerated Expansion (Dark Energy)
Outline

On Einstein’s Cosmological Constant (in the Year of Galileo and Astronomy)
CE and Accelerated Expansion (Dark Energy)
The Sign of the Casimir Force
Outline

- On Einstein’s Cosmological Constant (in the Year of Galileo and Astronomy)
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
- Repulsion from Higher Dimensions and BCs
Outline

- On Einstein’s Cosmological Constant (in the Year of Galileo and Astronomy)
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
- Repulsion from Higher Dimensions and BCs
- Phase Space of Hořava-Lifshitz Cosmologies
Outline

- On Einstein’s Cosmological Constant (in the Year of Galileo and Astronomy)
- CE and Accelerated Expansion (Dark Energy)
- The Sign of the Casimir Force
- Repulsion from Higher Dimensions and BCs
- Phase Space of Hořava-Lifshitz Cosmologies

With THANKS to:
S. Carloni, G. Cognola, J. Haro, S.D. Odintsov, A. Saharian, P.J. Silva, S. Zerbini, ...
On Einstein’s Cosmological Constant

Our universe seems to be spatially flat and to possess a non-vanishing cosmological constant

- For cosmologists and general relativists: a great mistake (Einstein)

\[R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -(8\pi G/c^4)T_{\mu\nu} + \lambda g_{\mu\nu} \]

- For elementary particle physicists: a great embarrassment

 no way to get rid off (Coleman, Weinberg, Polchinski)

- The cc Λ is indeed a peculiar quantity

 - has to do with cosmology Einstein’s eqs., FRW universe
 - has to do with the local structure of elementary particle physics

stress-energy density μ of the vacuum

\[L_{cc} = \int d^4x \sqrt{-g} \mu^4 = \frac{1}{8\pi G} \int d^4x \sqrt{-g} \lambda \]

In other words: two contributions on the same footing (Zel’dovich, 68)

\[\frac{\Lambda c^2}{8\pi G} + \frac{1}{\text{Vol}} \frac{\hbar c}{2} \sum_i \omega_i \]
Einstein Equations (1915-17): \[G_{\mu\nu} - \lambda g_{\mu\nu} = -(8\pi G/c^4) T_{\mu\nu} \]

Geometry = Energy-Matter

\(G_{\mu\nu} \) linear combination of the metric \(g_{\mu\nu} \) and 1st & 2nd derivatives

\(T_{\mu\nu} \) energy-momentum tensor

Schwarzschild solution (1916)
\[
ds^2 = \left(1 - \frac{2MG}{r}\right) dt^2 - \left(1 - \frac{2MG}{r}\right)^{-1} dr^2 - r^2 d\theta^2 - r^2 \sin^2 \theta d\varphi^2
\]

Friedmann-Lemaître-Robertson-Walker (1935-36) sol (A. Friedmann 1922)
\[
ds^2 = dt^2 - a^2(t) \left(\frac{dr^2}{1-kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right)
\]

gen fam: homog + isotrop, \(k \) par \(\pm 1, 0 \)

Hubble ea 1923-29, Keeler Slipher Campbell 1918

One field eq looks like Newtonian eq for the gravit pot:
\[
\nabla^2 \phi = 4\pi G (\rho + 3p/c^2)
\]

density & pressure contribute to the gravit pot
\[
\lambda = 8\pi G \rho_{vac}, \quad p_{vac} = -\rho_{vac} c^2
\]

From the FRW metric and Einstein Eqs, an "equation of motion" of the universe
\[
H^2 \equiv \left(\frac{\dot{a}}{a} \right)^2 = \frac{8\pi G}{3} \rho + \frac{\lambda}{3} - \frac{k}{a^2}
\]
From GR to Cosmology

With the definitions:

\[\Omega_m \equiv \frac{8\pi G}{3H^2} \rho_m, \quad \Omega_\lambda \equiv \frac{\lambda}{3H^2}, \quad \Omega_k \equiv -\frac{k}{H^2} \]

The equation of motion becomes

\[\left(\frac{da}{dt} \right)^2 = H_0^2 \left[\frac{\Omega_m(0)}{a} + a^2 \Omega_\lambda(0) + \Omega_k \right] \]

(the superscript (o) represents quantities measured at the present time)

In other terms, Friedmann equation in Cosmology:

\[\frac{\dot{a}^2}{a^2} = H_0^2 \left[\Omega_R \left(\frac{a_0}{a} \right)^4 + \Omega_{NR} \left(\frac{a_0}{a} \right)^3 + \Omega_k \left(\frac{a_0}{a} \right)^2 + \Omega_\lambda \right] \]

- \(\Omega_R \) relativistic matter \((p_R = \frac{1}{3}\rho_R; \quad \rho_R \propto a^{-4}) \)
- \(\Omega_{NR} \) nonrelativistic matter \((p_{NR} = 0; \quad \rho_{NR} \propto a^{-3}) \)
- \(\Omega_\lambda \) cosmological constant \((p_\lambda = -\rho_\lambda; \quad \rho_\lambda = \text{const}) \)

\[\Omega = \Omega_R + \Omega_{NR} + \Omega_\lambda \quad \text{total energy density} \quad \text{(cosmic triangle)} \]
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)
Zero point energy

QFT vacuum to vacuum transition: $\langle 0 | H | 0 \rangle$

Spectrum, normal ordering (harm oscill):

$$H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger$$
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0|H|0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0|H|0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H = \frac{1}{2} \zeta_H^{-1}(-1)
\]
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0|H|0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0|H|0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \ \text{tr} \ H = \frac{1}{2} \ \zeta_H^\mu(-1)
\]

gives \(\infty \) physical meaning?
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \ \text{tr} \ H = \frac{1}{2} \ \zeta_H^\mu (-1)
\]

gives \(\infty \) physical meaning?

Regularization + Renormalization (cut-off, dim, \(\zeta \))
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H = \frac{1}{2} \zeta_H^\mu (-1)
\]

gives \(\infty \) physical meaning?

Regularization + Renormalization (cut-off, dim, \(\zeta \))

Even then: Has the final value real sense?
The Casimir Effect
The Casimir Effect

BC e.g. periodic
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields

vacuum

Casimir Effect
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
- Sonoluminiscence (Schwinger)
- Cond. matter (wetting \(^3\)He alc.)
- Optical cavities
- Direct experim. confirmation
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:

- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation

Van der Waals, Lifschitz theory
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation

Van der Waals, Lifschitz theory

- Dynamical CE
- Lateral CE
- Extract energy from vacuum
- CE and the cosmological constant ⇐
The main issue: energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]
The main issue: energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G(\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum
Quantum Vacuum Fluct’s & the CC

The main issue: S.A. Fulling et. al., hep-th/070209v2

energy **ALWAYS** gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations: [E Mottola]

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum

Equivalent to a **cosmological constant** \(\Lambda = 8\pi G \mathcal{E} \)
Quantum Vacuum Fluct’s & the CC

The main issue: S.A. Fulling et. al., hep-th/070209v2

energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

Appears on the rhs of Einstein’s equations: [E Mottola]

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitations above the vacuum

Equivalent to a cosmological constant \(\Lambda = 8\pi G \mathcal{E} \)

Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

\[\Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]
Quantum Vacuum Fluct’s & the CC

- The main issue: S.A. Fulling et. al., hep-th/070209v2

 energy ALWAYS gravitates, therefore the energy density of the vacuum, more precisely, the vacuum expectation value of the stress-energy tensor

\[\langle T_{\mu\nu} \rangle \equiv -\mathcal{E} g_{\mu\nu} \]

- Appears on the rhs of Einstein’s equations: [E Mottola]

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

- It affects cosmology: \(\tilde{T}_{\mu\nu} \) excitation above the vacuum

- Equivalent to a cosmological constant \(\Lambda = 8\pi G \mathcal{E} \)

- Recent observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

\[\Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]

- Idea: zero point fluctuations can contribute to the cosmological constant Ya.B. Zeldovich ’68
Relativistic field: collection of harmonic oscillation's (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + \frac{m^2}{\hbar^2}, \quad k = \frac{2\pi}{\lambda} \]
CC Problem

- Relativistic field: collection of harmonic oscillators (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

- Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresponding to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]

kind of (thick!) aether R Caldwell, S Carroll but C Gómez, G Dvali
CC PROBLEM

- Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

- Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]

kind of (thick!) aether R Caldwell, S Carroll but C Gómez, G Dvali

- Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]
CC Problem

Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = 2\pi/\lambda \]

Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]

kind of (thick!) aether R Caldwell, S Carroll but C Gómez, G Dvali

Observational tests see nothing (or very little) of it:

\[\Rightarrow \text{(new) cosmological constant problem} \]

Very difficult to solve and we do not address this question directly

[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]
CC PROBLEM

Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

Evaluating in a box and putting a cut-off at maximum \(k_{\text{max}} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\rho \sim \frac{\hbar k_{\text{Planck}}^4}{16\pi^2} \sim 10^{123} \rho_{\text{obs}} \]

kind of (thick!) aether \quad R Caldwell, S Carroll \quad but \quad C Gómez, G Dvali

Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]

Very difficult to solve and we do not address this question directly

[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]

What we do consider —with relative success in some different approaches— is the additional contribution to the cc coming from the non-trivial topology of space or from specific boundary conditions imposed on braneworld models:

\[\implies \text{kind of cosmological Casimir effect} \]
A. Assuming one is able to prove that the ground value of the cc is zero (Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998) we will be left with this incremental value coming from the topology or BCs.
A. Assuming one is able to prove that the ground value of the cc is zero (Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998) we will be left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:
A. Assuming one is able to prove that the ground value of the cc is zero (Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998) we will be left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:

(a) small and large compactified scales
A. Assuming one is able to prove that the ground value of the cc is zero (Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998) we will be left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:

(a) small and large compactified scales

(b) dS & AdS worldbranes
A. Assuming one is able to prove that the ground value of the cc is zero (Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998) we will be left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:

(a) small and large compactified scales
(b) dS & AdS worldbranes
(c) supergraviton theories (discret dims, deconstr)
Cosmo-Topol Casimir Eff’t & Alternat’s

A. Assuming one is able to prove that the ground value of the cc is zero (Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998) we will be left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude—corresponding to the one coming from the observed acceleration in the expansion of our universe—in some reasonable models involving:

- (a) small and large compactified scales
- (b) dS & AdS worldbranes
- (c) supergraviton theories (discret dims, deconstr)

B. Recent alternatives:
 (i) L. Faddeev 0911.0282 (Adler ’82)
 Newton const in E-H Lag has dim of mass \(\rightarrow\) non-renormalizability
 Describe gravity by vector field (as Higgs mechanism)
 (ii) Porto & Zee 0910.3716 Dynamical critical behavior of gravity in EuIR sector and a mechanism to relax the cc

Trento, November 6, 2009 – p. 10/2
The Braneworld Case

1. Braneworld may help to solve:
 - the hierarchy problem
 - the cosmological constant problem

2. Presumably, the bulk Casimir effect will play a role in the construction (radion stabilization) of braneworlds

 Bulk Casimir effect (effective potential) for a conformal or massive scalar field

 Bulk is a 5-dim AdS or dS space with 2/1 4-dim dS brane (our universe)

 Consistent with observational data even for relatively large extra dimension

 Previous work:
 → flat space brane
 → bulk conformal scalar field
 → conclusion: no CE

 We used zeta regularization at full power, with positive results!

EE, S Nojiri, SD Odintsov, S Ogushi, Phys Rev D67 (2003) 063515 Casimir effect in de Sitter and Anti-de Sitter braneworlds EE, SD Odintsov, AA Saharian 0902.0717 Repulsive Casimir effect from extra dimensions and Robin BC: from branes to pistons
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account
- Casimir calculation: attractive force
Many papers dealing on this issue: here just short account

Casimir calculation: attractive force

Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC.
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account

- Casimir calculation: attractive force

- Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

- Systematic calculation, for different fields, BCs, and dimensions
 J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account

Casimir calculation: attractive force

Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

Systematic calculation, for different fields, BCs, and dimensions
J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls

Possibly not relevant at lab scales, but very important for cosmological models
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account

Casimir calculation: attractive force

Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

Systematic calculation, for different fields, BCs, and dimensions
J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls

Possibly not relevant at lab scales, but very important for cosmological models

a mirror pair of dielectric bodies always attract each other
CP Bachas, J Phys A40, 9089 (2007) from a general property of
Euclidean QFT ‘reflection positivity’ (Osterwalder - Schrader 73, 75):
∃ of positive Hilbert space and self-adjoint non-negative Hamiltonian
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^{*} \Theta(f) \)
E.g. \exists \textbf{correlation inequality}: \langle f \Theta(f) \rangle > 0

\Theta \textbf{reflection} with respect to a 3-dim hyperplane in \mathbb{R}^4

the action of Θ on f is anti-unitary $\Theta(cf) = c^* \Theta(f)$

The existence of the reflection operator Θ is a consequence of \textbf{unitarity} only, and makes no assumptions about the discrete C, P, T symmetries
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^{*}\Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of

\textit{unitarity} only, and makes no assumptions about the discrete

\(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic

shell into two rigid hemispheres is a \textit{mathematically singular} operation

(which introduces divergent edge contributions)
E.g. \exists correlation inequality: $\langle f \Theta(f) \rangle > 0$

Θ reflection with respect to a 3-dim hyperplane in \mathbb{R}^4 the action of Θ on f is anti-unitary $\Theta(cf) = c^*\Theta(f)$

The existence of the reflection operator Θ is a consequence of unitarity only, and makes no assumptions about the discrete C, P, T symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions)

Theorem does not apply for
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)
the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of
unitarity only, and makes no assumptions about the discrete
\(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic
shell into two rigid hemispheres is a mathematically singular operation
(which introduces divergent edge contributions)

Theorem does not apply for

- mirror probes in a Fermi sea (chemical-potential term), eg when
electron-gas fluctuations become important
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer's result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions)

Theorem does not apply for

- mirror probes in a Fermi sea (chemical-potential term), eg when electron-gas fluctuations become important
- periodic BCs for fermions
E.g. ∃ correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

- \(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)
- the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries.

- Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions).

- Theorem does not apply for
 - mirror probes in a Fermi sea (chemical-potential term), eg when electron-gas fluctuations become important
 - periodic BCs for fermions
 - Robin BCs in general \(\Leftarrow \)
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space.
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space.

Most general case: constants in the BCs different for the two plates. It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces.
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space.

Most general case: constants in the BCs different for the two plates. It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces.

Robin type BCs are an extension of Dirichlet and Neumann’s, most suitable to describe physically realistic situations.
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime \(R^{(D-1,1)} \times \Sigma \), \(\Sigma \) compact internal space

Most general case: constants in the BCs different for the two plates
It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces

Robin type BCs are an extension of Dirichlet and Neumann’s
\[\Rightarrow \] most suitable to describe physically realistic situations

Genuinely appear in:
\[\Rightarrow \] vacuum effects for a confined charged scalar field in external fields [Ambjørn ea 83],
\[\Rightarrow \] spinor and gauge field theories,
\[\Rightarrow \] quantum gravity and supergravity [Luckock ea 91]
Can be made conformally invariant, purely-Neumann conditions cannot
\[\Rightarrow \] needed for conformally invariant theories with BC, to preserve cf invar
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1 - 1, 1)} \times \Sigma$, Σ compact internal space.

Most general case: constants in the BCs different for the two plates. It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces.

Robin type BCs are an extension of Dirichlet and Neumann’s → most suitable to describe physically realistic situations.

Genuinely appear in: → vacuum effects for a confined charged scalar field in external fields [Ambjørn ea 83], → spinor and gauge field theories, → quantum gravity and supergravity [Luckock ea 91]

Can be made conformally invariant, purely-Neumann conditions cannot → needed for conformally invariant theories with BC, to preserve cf invar

Quantum scalar field with Robin BCs on boundary of cavity violates Bekenstein’s entropy-to-energy bound near certain points in the space of the parameter defining the boundary condition [Solodukhin 01]
Robin BCs can model the finite penetration of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01] Casimir forces between the boundary planes of films [Schmidt ea 08]
Robin BCs can model the finite penetration of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01].

Casimir forces between the boundary planes of films [Schmidt ea 08].

Naturally arise for scalar and fermion bulk fields in the Randall-Sundrum model.
Robin BCs can model the finite penetration of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01] Casimir forces between the boundary planes of films [Schmidt ea 08]

Naturally arise for scalar and fermion bulk fields in the Randall-Sundrum model

For arbitrary internal space, interaction part of the Casimir energy given by

\[\Delta E_{[a_1, a_2]} = \frac{(4\pi)^{-D_1/2}}{\Gamma(D_1/2)} \sum_{\beta} \int_{m_\beta}^{\infty} dx \left(x^2 - m_\beta^2 \right)^{D_1/2-1} \]

\[\times \ln \left[1 - \frac{(\beta_1 x + 1)(\beta_2 x + 1)}{(\beta_1 x - 1)(\beta_2 x - 1)} e^{-2ax} \right] \quad (*) \]
Robin BCs can model the finite penetration of the field through the boundary: the ‘skin-depth’ param related to Robin coefficient [Mostep ea 85, Lebedev 01] Casimir forces between the boundary planes of films [Schmidt ea 08] Naturally arise for scalar and fermion bulk fields in the Randall-Sundrum model

For arbitrary internal space, interaction part of the Casimir energy given by

\[
\Delta E_{[a_1,a_2]} = \frac{(4\pi)^{-D_1/2}}{\Gamma(D_1/2)} \sum_\beta \int_{m_\beta}^{\infty} dx \, x(x^2 - m_\beta^2)^{D_1/2-1} \times \ln \left[1 - \frac{(\beta_1 x + 1)(\beta_2 x + 1)}{(\beta_1 x - 1)(\beta_2 x - 1)} e^{-2ax} \right]
\]

For Dirichlet and Neumann BCs on both plates this leads to

\[
\Delta E_{[a_1,a_2]}^{(J,J)} = -\frac{2a^{-D_1}}{(8\pi)^{(D_1+1)/2}} \sum_\beta \sum_{n=1}^{\infty} \frac{f((D_1+1)/2(2n a m_\beta)}{n^{D_1+1}}
\]

with \(f_\nu(z) = z^\nu K_\nu(z) \) \(\rightarrow \) energy always negative
For Dirichlet BC on one plate and Neumann on the other, the interaction component of the vacuum energy is

\[
\Delta E_{[a_1, a_2]}^{(D,N)} = \frac{(4\pi)^{-D_1/2} a}{\Gamma(D_1/2 + 1)} \sum_{\beta} \int_{m_\beta}^{\infty} dx \frac{(x^2 - m^2)^{D_1/2}}{e^{2ax} + 1}
\]

\[
= \frac{2a^{-D_1}}{(8\pi)^{(D_1+1)/2}} \sum_{\beta} \sum_{n=1}^{\infty} \frac{f_{(D_1+1)/2}(2n a m_\beta)}{(-1)^{n+1} n^{D_1+1}}
\]

positive for all values of the inter-plate distance.
For Dirichlet BC on one plate and Neumann on the other, the interaction component of the vacuum energy is

\[
\Delta E^{(D,N)}_{[a_1,a_2]} = \frac{(4\pi)^{-D_1/2}a_1}{\Gamma(D_1/2 + 1)} \sum_\beta \int_{m_\beta}^{\infty} dx \frac{(x^2 - m_\beta^2)^{D_1/2}}{e^{2ax} + 1}
\]

\[
= \frac{2a^{-D_1}}{(8\pi)^{(D_1+1)/2}} \sum_\beta \sum_{n=1}^{\infty} \frac{f(D_1+1)/2(2n\alpha m_\beta)}{(-1)^{n+1}n^{D_1+1}}
\]

positive for all values of the inter-plate distance.

In the case of a conformally coupled massless field on the background of a spacetime conformally related to the one described by the line element

\[
ds^2 = g_{MN} dx^M dx^N = \eta_{\mu\nu} dx^\mu dx^\nu - \gamma_{il} dX^i dX^l
\]

\(\eta_{\mu\nu} = \text{diag}(1, -1, \ldots, -1)\) metric of \((D_1 + 1)\)-dim Minkowski st and \(X^i\) coordinates of \(\Sigma\), with the conformal factor \(\Omega^2(x^{D_1})\). Interaction part of Casimir energy is given (*), with coeffs \(\beta_j\) related to coeffs of the Robin BCs

\[
(1 + \bar{\beta}_j n^M \nabla_M) \varphi(x) = [1 + (-1)^{j-1} \Omega_j^{-1} \bar{\beta}_j \partial_{D_1}] \varphi(x) = 0, \quad \Omega_j = \Omega(x_j^{D_1})
\]

\& conformal factor \(\beta_j = \left[\Omega_j + (-1)^j \frac{D_1-1}{2\Omega_j} \bar{\beta}_j \Omega_j' \right]^{-1} \bar{\beta}_j, \quad \Omega_j' = \Omega_j'(x_j^{D_1})\)
In Randall-Sundrum 2-brane model with compact internal space, the Robin coefficients are \(\beta^{-1}_j = (-1)^j \frac{c_j}{2} - 2D \zeta / r_D \), \(c_1, c_2 \) mass parameters in the surface action of the scalar field for the left and right branes, respectively. The vacuum energy can have a minimum, for the stable equilibrium point. Can be used in braneworld models for the stabilization of the radion field.
In Randall-Sundrum 2-brane model with compact internal space, the Robin coefficients are \(\beta_j^{-1} = (-1)^j c_j / 2 - 2D \zeta / r_D \), \(c_1, c_2 \) mass parameters in the surface action of the scalar field for the left and right branes, respectively. The vacuum energy can have a minimum, for the stable equilibrium point. Can be used in braneworld models for the stabilization of the radion field.

We have considered a **piston-like geometry**, introducing a third plate (then this plate is sent to infinity): Casimir force

\[
P = - \frac{2(4\pi)^{-D_1/2}}{V \Sigma \Gamma(D_1/2) a^{D_1+1}} \sum \int_{am_\beta}^{\infty} dx \frac{x^2(x^2 - a^2 m^2) a^{D_1/2-1}}{(b_1 x-1)(b_2 x-1)(b_1 x+1)(b_2 x+1) e^{2x} - 1}
\]
In Randall-Sundrum 2-brane model with compact internal space, the Robin coefficients are \(\beta_j^{-1} = (-1)^j c_j / 2 - 2D\zeta / r_D \), \(c_1, c_2 \) mass parameters in the surface action of the scalar field for the left and right branes, respectively.

The vacuum energy can have a minimum, for the stable equilibrium point.

Can be used in braneworld models for the stabilization of the radion field.

We have considered a piston-like geometry, introducing a third plate (then this plate is sent to infinity) Casimir force

\[
P = - \frac{2(4\pi)^{-D_1/2}}{V_N \Gamma(D_1/2) a^{D_1+1}} \sum_{j} \int_{0}^{\infty} dx \frac{x^2 (x^2 - a^2 m_j^2)^{D_1/2-1}}{e^{2ax} - 1}
\]

With independence of the geometry of the internal space, the force is attractive for Dirichlet or Neumann boundary conditions on both plates.

\[
P^{(J,J)} = - \frac{2(4\pi)^{-D_1/2}}{V_N \Gamma(D_1/2)} \sum_{j} \int_{0}^{\infty} dx x^2 \frac{(x^2 - m_j^2)^{D_1/2-1}}{e^{2ax} - 1}
= 2a^{-D_1-1} \frac{1}{(8\pi)^{(D_1+1)/2} V_N} \sum_{j} \sum_{n=1}^{\infty} \frac{1}{n^{D_1+1}} \left[f(D_1+1)/2(2n m_j) - f(D_1+3)/2(2n m_j) \right]
\]

\(J = D, N \), and repulsive for Dirichlet BC on one plate and Neumann on the other, a monotonic function of the distance.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates. [also L P Teo arXiv:0907.2989 arXiv:0907.5258]
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates [also L P Teo arXiv:0907.2989 arXiv:0907.5258].

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates [also L P Teo arXiv:0907.2989 arXiv:0907.5258].

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.

In this limit, to leading order we recover the standard result for the Casimir force between two plates in $(D_1 + 1)$-dim Minkowski spacetime.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates [also L P Teo arXiv:0907.2989 arXiv:0907.5258].

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.

In this limit, to leading order we recover the standard result for the Casimir force between two plates in $(D_1 + 1)$-dim Minkowski spacetime.

In absence of zero modes (case of twisted BCs along compactified dimens): Casimir forces exponentially suppressed in limit of small size of internal space. For small values of the inter-plate distance Casimir forces generically attractive, except for Dirichlet BCs on one plate and non-Dirichlet BCs on the other: then Casimir force is repulsive at small distances. When separation is large, the sign depends not only on BCs, but also on geometry of transversal dimens.
For general Robin BCs the Casimir force can be either attractive (negative P) or repulsive (positive P), depending on the Robin coefficients and distance between plates [also L P Teo arXiv:0907.2989 arXiv:0907.5258]

For small values of the size of internal space, in models with zero modes along the internal space, main contribution to Casimir force comes from the zero modes: contributions of non-zero modes are exponentially suppressed.

In this limit, to leading order we recover the standard result for the Casimir force between two plates in $(D_1 + 1)$-dim Minkowski spacetime.

In absence of zero modes (case of twisted BCs along compactified dimens): Casimir forces exponentially suppressed in limit of small size of internal space. For small values of the inter-plate distance Casimir forces generically attractive, except for Dirichlet BCs on one plate and non-Dirichlet BCs on the other: then Casimir force is repulsive at small distances. When separation is large, the sign depends not only on BCs, but also on geometry of transversal dimens.

Remarks: (i) This property could be used in the proposal of a Casimir experiment with the purpose to carry out an explicit detailed observation of ‘large’ extra dimensions as allowed by some models of particle physics.
(ii) Possible laboratory verification (Robin BCs model skin depth of material)
Gravity Eqs as Eqs of State: $f(R)$ Case

The cosmological constant as an “integration constant”

T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

Unimodular Gravity

Also I Shapiro, J Solà,... cc RG flow
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
- Unimodular Gravity
- Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

- Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

- Unimodular Gravity Also I Shapiro, J Solà, ... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context: Einstein’s Eqs are to be viewed as EoS
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
 Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context: Einstein’s Eqs are to be viewed as EoS

- Should, probably, not be taken as basic for quantizing gravity
Gravity Eqs as Eqs of State: $f(R)$ Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

- Unimodular Gravity
 Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context: Einstein’s Eqs are to be viewed as EoS

- Should, probably, not be taken as basic for quantizing gravity

- C. Eling, R. Guedens, T. Jacobson [PRL2006]: extension to polynomial $f(R)$ gravity but as non-equilibrium thermodyn.
 Also Erik Verlinde (private discussions)
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proportional to variation of the horizon area: \(\delta S = \eta \delta A \)
- local temperature \(T \) defined as Unruh temp: \(T = \hbar k / 2\pi \)
- functional dependence of \(S \) wrt energy and size of system
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proport to variation of the horizon area: \(\delta S = \eta \delta A \)
- local temperature \(T \) defined as Unruh temp: \(T = \hbar k / 2\pi \)
- functional dependence of \(S \) wrt energy and size of system

Key point in our generalization: the definition of the local entropy (Iyer+Wald 93: local boost inv, Noether charge)

\[S = -2\pi \int_{\Sigma} E_{pqrs}^{pr} \epsilon_{pq} \epsilon_{rs}, \quad \delta S = \delta (\eta_e A) \]

\(\eta_e \) is a function of the metric and its deriv’s to a given order

\[\eta_e = \eta_e \left(g_{ab}, R_{cdef}, \nabla^{(l)} R_{pqrs} \right) \]
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proportional to variation of the horizon area: \(\delta S = \eta \delta A \)
- local temperature \(T \) defined as Unruh temp: \(T = \hbar k / 2\pi \)
- functional dependence of \(S \) wrt energy and size of system

Key point in our generalization: the definition of the local entropy (Iyer+Wald 93: local boost inv, Noether charge)

\[S = -2\pi \int_{\Sigma} E^{pqrs}_R \epsilon_{pq} \epsilon_{rs}, \quad \delta S = \delta (\eta_e A) \]

\(\eta_e \) is a function of the metric and its deriv’s to a given order

\[\eta_e = \eta_e (g_{ab}, R_{cdef}, \nabla^{(l)} R_{pqrs}) \]

Case of \(f(R) \) gravities: \(L = f(R, \nabla^n R) \)
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E_R^{pqrs} \varepsilon_{pq} \varepsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \varepsilon_{pq} \varepsilon_{rs}
\]

\[
= \frac{\partial f}{\partial R} = \frac{\eta_e}{2\pi}, \quad S = \frac{A}{4 G_{\text{eff}}}
\]
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E_R^{pqrs} \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} (g_{pr} g_{qs} - g_{qr} g_{ps}) \epsilon_{pq} \epsilon_{rs}
\]

\[
= \frac{\partial f}{\partial R} = \frac{\eta_e}{2\pi}, \quad S = \frac{A}{4 G_{\text{eff}}}
\]

For these theories, the different polarizations of the gravitons only enter in the definition of the effective Newton constant through the metric itself
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E_{R}^{pqrs} \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \epsilon_{pq} \epsilon_{rs}
\]

\[
= \frac{\partial f}{\partial R} = \frac{\eta_{e}}{2\pi}, \quad S = \frac{A}{4 G_{\text{eff}}}
\]

For these theories, the different polarizations of the gravitons only enter in the definition of the effective Newton constant through the metric itself.

Final result, for \(f(R) \) gravities:

the local field equations can be thought of as an equation of state of equilibrium thermodynamics (as in the GR case)
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics

EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton exchange (effective propagator)
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics

EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy

RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton exchange (effective propagator)

S-F Wu, G-H Yang, P-M Zhang, arXiv:0805.4044, direct extension of our results to Brans-Dicke and scalar-tensor gravities

T Zhu, Ji-R Ren and S-F Mo, arXiv:0805.1162 [gr-qc];

Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]
Hořava-Lifshitz Gravity

Hořava made a proposal for an ultraviolet completion of GR:

Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory
Hořava-Lifshitz Gravity

Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting
Hořava made a proposal for an ultraviolet completion of GR:
Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the **Lifshitz theory**

Seems to be **renormalizable**, at least at the level of **power counting**

Ultraviolet behavior obtained by introducing **irrelevant operators** that explicitly **break Lorentz invariance** but ameliorate the ultraviolet divergences
Hořava-Lifshitz Gravity

Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting

Ultraviolet behavior obtained by introducing irrelevant operators that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences

Lorentz invariance is expected to be recovered at low energies, as an accidental symmetry of the theory
Hořava made a proposal for an ultraviolet completion of GR: *Hořava-Lifshitz gravity* [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the *Lifshitz theory*

Seems to be *renormalizable*, at least at the level of *power counting*

Ultraviolet behavior obtained by introducing *irrelevant operators* that explicitly *break Lorentz invariance* but ameliorate the ultraviolet divergences

Lorentz invariance is expected to be *recovered at low energies*, as an accidental symmetry of the theory

HL proposal came with the possibility of imposing or not the so-called *detailed balance condition*: a restriction on the form of the potential terms which may appear in the Lagrangian that leads to simplifications: reduces # of couplings
Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory

Seems to be renormalizable, at least at the level of power counting

Ultraviolet behavior obtained by introducing irrelevant operators that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences

Lorentz invariance is expected to be recovered at low energies, as an accidental symmetry of the theory

HL proposal came with the possibility of imposing or not the so-called detailed balance condition: a restriction on the form of the potential terms which may appear in the Lagrangian that leads to simplifications: reduces # of couplings

HL th research on: its internal consistency, how to define the infrared limit, its compatibility with GR, and potential application to cosmology
Hořava made a proposal for an ultraviolet completion of GR: Hořava-Lifshitz gravity [arXiv:0901.3775]

Due to Hořava’s initial inspiration on the Lifshitz theory, it seems to be renormalizable, at least at the level of power counting.

Ultraviolet behavior obtained by introducing irrelevant operators that explicitly break Lorentz invariance but ameliorate the ultraviolet divergences.

Lorentz invariance is expected to be recovered at low energies, as an accidental symmetry of the theory.

HL proposal came with the possibility of imposing or not the so-called detailed balance condition: a restriction on the form of the potential terms which may appear in the Lagrangian that leads to simplifications: reduces # of couplings.

HL th research on: its internal consistency, how to define the infrared limit, its compatibility with GR, and potential application to cosmology.

Consistency status of the theory not yet completely clear, nor its low energy limit, and how GR is recovered at the different regimes.
Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity
Dynamical system approach \(\rightarrow\) properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized
Dynamical system approach \(\rightarrow\) properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized.

The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)
Phase Sp of Hořava-Lifshitz Cosmologies

- Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

- The cosmological phase space of the HL model is characterized

- The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

- In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe
Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized

The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe

Also, imposing detailed balance leads to a cc with the wrong sign
Dynamical system approach → properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

The cosmological phase space of the HL model is characterized.

The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner).

In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe.

Also, imposing detailed balance leads to a cc with the wrong sign.

We show that the cosmological models generated from HL gravity without the detailed balance assumption have the potential to describe the transition between the Friedmann and the dark energy eras.
Phase Sp of Hořava-Lifshitz Cosmologies

- Dynamical system approach \rightarrow properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

- The cosmological phase space of the HL model is characterized

- The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

- In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe

- Also, imposing detailed balance leads to a cc with the wrong sign

- We show that the cosmological models generated from HL gravity without the detailed balance assumption have the potential to describe the transition between the Friedmann and the dark energy eras

- Plausible conclusion: a HL cosmology compatible with the present observt’s of the universe only possible if the detailed balance condition is broken

Phase Sp of Hořava-Lifshitz Cosmologies

- Dynamical system approach \(\rightarrow\) properties of cosmological models based on the Hořava-Lifshitz (HL) gravity

- The cosmological phase space of the HL model is characterized

- The analysis allows to compare some key physical consequences of imposing (or not) detailed balance (Sotiriou, Visser, Weinfurtner)

- In detailed balance case one attractor corresponds to an oscillatory behavior: associated to a bouncing universe (Brandenberger), will prevent evolution towards a de Sitter universe

- Also, imposing detailed balance leads to a cc with the wrong sign

- We show that the cosmological models generated from HL gravity without the detailed balance assumption have the potential to describe the transition between the Friedmann and the dark energy eras

- Plausible conclusion: a HL cosmology compatible with the present observt’s of the universe only possible if the detailed balance condition is broken

Grazie Mille!
"Cosmology, the Quantum Vacuum, and Zeta Functions"

A workshop with a celebration of Emilio Elizalde's sixtieth birthday
ICE/CSIC, Universitat Autònoma de Barcelona, 8-10th March, 2010

Speakers:
I. Aref'eva (Steklov Math Inst, Moscow)
M. Asorey (Zaragoza Univ)
I. Brevik (Trondheim Univ)
I.L. Buchbinder (TSPU, Tomsk)
S. Capozziella (Naples Univ)
S. Carloni (IEEC, Barcelona)
M. Chaichian, A. Tureanu (Helsinki Univ)
G. Cognola, S. Zerbini (Trento Univ)
V. Faraoni (Bishops Univ, Canada)
A. Feinstein (Univ Basque Country)
E. Gaztañaga (ICE/CSIC-IEEC)
K. Ghoroku (Fukuoka Univ)
J. Gomis (UB, Barcelona)
A. Gonzalez-Arroyo (UAM, Madrid)
P. Gonzalez-Diaz (IAEFT, CSIC, Madrid)
T. Inagaki (Hiroshima Univ)
K.I. Maeda (Waseda Univ, Tokyo)
A. Maroto (Complutense Univ, Madrid)
G. Montani (ICRA, Roma)
S. Nojiri (Nagoya Univ)
V.V. Obukhov, K.E. Osetrin (TSPU, Tomsk)
S.D. Odintsov (ICREA, ICE/CSIC-IEEC)
D. Pavón (UAB, Barcelona)
R. Pérez-Marco (CNRS, Paris XIII)
B. Sáez-Gómez (ICE/CSIC-IEEC)
M. Sasaki (YITP, Kyoto Univ)
I. Volovich (Russian Acad of Sci, Moscow)
R. Woodard (Univ of Florida)
S. Xambó (UPC, Barcelona)
A. Yurov (Kaliningrad Univ)
and others to be confirmed

Organizing Committee:
E. Elizalde (ICE/CSIC-IEEC)
S. Odintsov (ICREA, ICE/CSIC-IEEC)
M. Asorey (Zaragoza Univ)
E. Gaztañaga (ICE/CSIC-IEEC)
J. Gomis (UB, Barcelona)

Local:
D. Sáez-Gómez
A. López-Revelles
I. Moltó
D. Nieto