Vacuum Fluctuations: Regularization & Cosmological Issues

Emilio Elizalde

ICE/CSIC & IEEC, UAB, Barcelona

ESF CASIMIR Topical Meeting, Wien, 11. Mai 2011
Outline

- On Einstein’s Cosmological Constant: a Historical Perspective
- Quantum Vacuum Fluctuations: the Casimir Effect
- Vacuum Fluctuations and the Equivalence Principle
- The Sign of the Vacuum Forces
- Repulsion from Higher Dimensions and BCs
- CE and Accelerated Expansion (Dark Energy): a Cosmo-Topological Casimir Effect?
- Gravity Equations as Equations of State
The present description of our Universe started to take form during the 3rd decade of last Century

[E Mach, F Wilczek]
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century. [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} \]
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4)T_{\mu\nu} \]

But... the Universe was static!!
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} \]

But... the Universe was static !!

The cc \(\lambda \)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} + \lambda g_{\mu\nu} \]
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} \]

But... the Universe was static !!

The cc \(\lambda \)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} + \lambda g_{\mu\nu} \]

What is \(\lambda \)? Non-physical
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu}$$

But... the Universe was static!!

The cc λ

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} + \lambda g_{\mu\nu}$$

What is λ? Non-physical

Karl Schwarzschild: Black Hole solution (22 December 1915)
The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} \]

But... the Universe was static!!

The cc \(\lambda \)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} + \lambda g_{\mu\nu} \]

What is \(\lambda \)? Non-physical

Karl Schwarzschild: Black Hole solution (22 December 1915)

Alexander Friedmann: expanding universe solution (1922)
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} \]

But... the Universe was static!!

The cc \(\lambda \)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} + \lambda g_{\mu\nu} \]

What is \(\lambda \)? Non-physical

Karl Schwarzschild: Black Hole solution (22 December 1915)

Alexander Friedmann: expanding universe solution (1922)

Willem de Sitter: massless universe static solution (just cc)
‘dark matter’ (with AE, 1932)
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} \]

But... the Universe was static!!

The cc \(\lambda \)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4) T_{\mu\nu} + \lambda g_{\mu\nu} \]

What is \(\lambda \)? Non-physical

Karl Schwarzschild: Black Hole solution (22 December 1915)

Alexander Friedmann: expanding universe solution (1922)

Willem de Sitter: massless universe static solution (just cc) ‘dark matter’ (with AE, 1932)

Georges Lemaître: expanding universe (MIT 1925, AF sol); visited Vesto Slipher (Lowell Obs, Arizona, 1912 galaxy redshifts) and Edwin Hubble (Mount Wilson, Pasadena); Keeler-Slipher-Campbell, 1918
Our Universe: brief historical account

The present description of our Universe started to take form during the 3rd decade of last Century [E Mach, F Wilczek]

Einstein

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4)T_{\mu\nu} \]

But... the Universe was static !!

The cc \(\lambda \)

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -(8\pi G/c^4)T_{\mu\nu} + \lambda g_{\mu\nu} \]

What is \(\lambda \)? Non-physical

Karl Schwarzschild: Black Hole solution (22 December 1915)

Alexander Friedmann: expanding universe solution (1922)

Willem de Sitter: massless universe static solution (just cc)

‘dark matter’ (with AE, 1932)

Georges Lemaître: expanding universe (MIT 1925, AF sol); visited Vesto Slipher (Lowell Obs, Arizona, 1912 galaxy redshifts) and Edwin Hubble (Mount Wilson, Pasadena); Keeler-Slipher-Campbell, 1918

Led to Big Bang theory (Fred Hoyle, BBC radio’s Third Programme, 18:30 GMT, 28 March 1949)
Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory ’48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)
Historical account continued

- Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory '48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

- Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)
Historical account continued

Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory ’48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)

Dark matter: postulated by Fritz Zwicky (1934) to account for evidence of ‘missing mass’ in the orbital velocities of galaxies in clusters. Now lots of evidence: galactic rotation curves (Vera Rubin, Kent Ford, 1975), gravitational lensing, etc.
Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory '48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)

Dark matter: postulated by Fritz Zwicky (1934) to account for evidence of ‘missing mass’ in the orbital velocities of galaxies in clusters. Now lots of evidence: galactic rotation curves (Vera Rubin, Kent Ford, 1975), gravitational lensing, etc.

Arno Penzias, Robert Wilson (1964 Bell Labs, New Jersey); at Princeton (< 40 miles away) Dicke, Peebles, Wilkinson writing paper on how CMB should be
Burke (MIT) told Penzias of Peebles’ work: and the Big Bang was here!
Historical account continued

- Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory ‘48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

- Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)

- Dark matter: postulated by Fritz Zwicky (1934) to account for evidence of ‘missing mass’ in the orbital velocities of galaxies in clusters. Now lots of evidence: galactic rotation curves (Vera Rubin, Kent Ford, 1975), gravitational lensing, etc.

- Arno Penzias, Robert Wilson (1964 Bell Labs, New Jersey); at Princeton (< 40 miles away) Dicke, Peebles, Wilkinson writing paper on how CMB should be
Burke (MIT) told Penzias of Peebles’ work: and the Big Bang was here!

- Alan Guth (January 1980), Andrei Linde: inflation. Also: Alexei Starobinsky, Andreas Albrecht, Paul Steinhardt. And Zel'dovich, Coleman (decay of false vacuum)
Historical account continued

Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory ’48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)

Dark matter: postulated by Fritz Zwicky (1934) to account for evidence of ‘missing mass’ in the orbital velocities of galaxies in clusters. Now lots of evidence: galactic rotation curves (Vera Rubin, Kent Ford, 1975), gravitational lensing, etc.

Arno Penzias, Robert Wilson (1964 Bell Labs, New Jersey); at Princeton (< 40 miles away) Dicke, Peebles, Wilkinson writing paper on how CMB should be Burke (MIT) told Penzias of Peebles’ work: and the Big Bang was here!

Alan Guth (January 1980), Andrei Linde: inflation. Also: Alexei Starobinsky, Andreas Albrecht, Paul Steinhardt. And Zel’dovich, Coleman (decay of false vacuum)

Quantum fluctuations + inflation → multiverse
Hawking+Turok instanton ’98, NoBoundary (HH) vs chaotic inflation
Historical account continued

Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory ’48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)

Dark matter: postulated by Fritz Zwicky (1934) to account for evidence of ‘missing mass’ in the orbital velocities of galaxies in clusters. Now lots of evidence: galactic rotation curves (Vera Rubin, Kent Ford, 1975), gravitational lensing, etc.

Arno Penzias, Robert Wilson (1964 Bell Labs, New Jersey); at Princeton (< 40 miles away) Dicke, Peebles, Wilkinson writing paper on how CMB should be. Burke (MIT) told Penzias of Peebles’ work: and the Big Bang was here!

Alan Guth (January 1980), Andrei Linde: inflation. Also: Alexei Starobinsky, Andreas Albrecht, Paul Steinhardt. And Zel’dovich, Coleman (decay of false vacuum)

Quantum fluctuations + inflation \rightarrow multiverse

Hawking+Turok instanton ’98, NoBoundary (HH) vs chaotic inflation

Perlmutter ea, Riess ea, 1998: Universe expansion is accelerating!
Historical account continued

- Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory ’48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

- Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)

- Dark matter: postulated by Fritz Zwicky (1934) to account for evidence of ‘missing mass’ in the orbital velocities of galaxies in clusters. Now lots of evidence: galactic rotation curves (Vera Rubin, Kent Ford, 1975), gravitational lensing, etc.

- Arno Penzias, Robert Wilson (1964 Bell Labs, New Jersey); at Princeton (< 40 miles away) Dicke, Peebles, Wilkinson writing paper on how CMB should be
Burke (MIT) told Penzias of Peebles’ work: and the Big Bang was here!

- Alan Guth (January 1980), Andrei Linde: inflation. Also: Alexei Starobinsky, Andreas Albrecht, Paul Steinhardt. And Zel'dovich, Coleman (decay of false vacuum)

- Quantum fluctuations + inflation \rightarrow multiverse
Hawking+Turok instanton ’98, NoBoundary (HH) vs chaotic inflation

- Perlmutter ea, Riess ea, 1998: Universe expansion is accelerating!

- Dark Energy: scalar-tensor, f(R) theories // COBE, WMAP, PLANCK (LISA, BBO,...)
Fred Hoyle, Thomas Gold, Hermann Bondi: Steady State theory ’48, “C-field” with negative pressure to be consistent with conservation of energy (anticipated inflation)

Friedmann-Lemaître-Robertson-Walker: FLRW universe (1931,35-37)

Dark matter: postulated by Fritz Zwicky (1934) to account for evidence of ‘missing mass’ in the orbital velocities of galaxies in clusters. Now lots of evidence: galactic rotation curves (Vera Rubin, Kent Ford, 1975), gravitational lensing, etc.

Arno Penzias, Robert Wilson (1964 Bell Labs, New Jersey); at Princeton (< 40 miles away) Dicke, Peebles, Wilkinson writing paper on how CMB should be. Burke (MIT) told Penzias of Peebles’ work: and the Big Bang was here!

Alan Guth (January 1980), Andrei Linde: inflation. Also: Alexei Starobinsky, Andreas Albrecht, Paul Steinhardt. And Zel’dovich, Coleman (decay of false vacuum)

Quantum fluctuations + inflation \rightarrow multiverse
Hawking+Turok instanton ’98, NoBoundary (HH) vs chaotic inflation

Perlmutter ea, Riess ea, 1998: Universe expansion is accelerating!

Dark Energy: scalar-tensor, f(R) theories // COBE, WMAP, PLANCK (LISA, BBO,...)

On a different level: Richard Dawkins, Hoyle’s fallacy evolutionary biology \longleftrightarrow intelligent design
Trying to solve these puzzles!

The λ is indeed a peculiar quantity.
Trying to solve these puzzles!

The cosmological constant Λ is indeed a peculiar quantity that has to do with cosmology, Einstein's equations, and the FRW universe.
Trying to solve these puzzles!

- The λ is indeed a peculiar quantity
 - has to do with cosmology Einstein’s eqs., FRW universe
 - has to do with the local structure of elementary particle physics

stress-energy density μ of the vacuum

$$L_{cc} = \int d^4x \sqrt{-g} \mu^4 = \frac{1}{8\pi G} \int d^4x \sqrt{-g} \lambda$$
The \(\lambda \) is indeed a peculiar quantity

- has to do with cosmology: Einstein’s eqs., FRW universe

- has to do with the local structure of elementary particle physics

stress-energy density \(\mu \) of the vacuum

\[
L_{cc} = \int d^4x \sqrt{-g} \mu^4 = \frac{1}{8\pi G} \int d^4x \sqrt{-g} \lambda
\]

In other words: two contributions on the same footing

[Pauli 20’s, Zel’dovich ’68]

\[
\frac{\Lambda c^2}{8\pi G} + \frac{1}{\text{Vol}} \frac{\hbar c}{2} \sum_i \omega_i
\]
Trying to solve these puzzles!

The cosmological constant \(\lambda \) is indeed a peculiar quantity

- has to do with cosmology Einstein’s eqs., FRW universe
- has to do with the local structure of elementary particle physics stress-energy density \(\mu \) of the vacuum

\[
L_{cc} = \int d^4 x \sqrt{-g} \mu^4 = \frac{1}{8\pi G} \int d^4 x \sqrt{-g} \lambda
\]

In other words: two contributions on the same footing

[Pauli 20’s, Zel’dovich ’68]

\[
\Lambda\frac{c^2}{8\pi G} + \frac{1}{\text{Vol}} \frac{\hbar c}{2} \sum_i \omega_i
\]

For elementary particle physicists: a great embarrassment

no way to get rid off

Coleman, Hawking, Weinberg, Polchinski, ... ’88–’89
Trying to solve these puzzles!

- The \(\Lambda \) is indeed a peculiar quantity
- has to do with cosmology\,\,\,Einstein’s eqs., FRW universe
- has to do with the local structure of elementary particle physics

\[L_{cc} = \int d^4 x \sqrt{-g} \mu^4 = \frac{1}{8\pi G} \int d^4 x \sqrt{-g} \lambda \]

In other words: two contributions on the same footing
[Pauli 20’s, Zel’dovich ’68]

\[\frac{\Lambda}{8\pi G} c^2 + \frac{1}{\text{Vol}} \frac{\hbar c}{2} \sum_i \omega_i \]

- For elementary particle physicists: a great embarrassment
 no way to get rid off
Coleman, Hawking, Weinberg, Polchinski, ... ’88–’89

THE COSMOLOGICAL CONSTANT PROBLEM
Zero point energy

QFT vacuum to vacuum transition: $\langle 0 | H | 0 \rangle$
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H
\]
Zero point energy

QFT vacuum to vacuum transition: \[\langle 0 | H | 0 \rangle \]

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H
\]

gives \(\infty \) physical meaning?
Zero point energy

QFT vacuum to vacuum transition: \(\langle 0 | H | 0 \rangle \)

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H
\]

gives \(\infty \) physical meaning?

Regularization + Renormalization (cut-off, dim, \(\zeta \))
Zero point energy

QFT vacuum to vacuum transition: \[\langle 0 | H | 0 \rangle \]

Spectrum, normal ordering (harm oscill):

\[
H = \left(n + \frac{1}{2} \right) \lambda_n \ a_n \ a_n^\dagger
\]

\[
\langle 0 | H | 0 \rangle = \frac{\hbar c}{2} \sum_n \lambda_n = \frac{1}{2} \text{tr} \ H
\]

gives \(\infty \) physical meaning?

Regularization \((\text{cut-off, dim, } \zeta)\) + Renormalization

Even then: Has the final value real sense?
The Casimir Effect
The Casimir Effect

BC e.g. periodic

Casimir Effect
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields

Casimir Effect

vacuum

Φ
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:
- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation

Van der Waals, Lifschitz theory
The Casimir Effect

BC e.g. periodic
⇒ all kind of fields
⇒ curvature or topology

Universal process:

- Sonoluminiscence (Schwinger)
- Cond. matter (wetting 3He alc.)
- Optical cavities
- Direct experim. confirmation

Van der Waals, Lifschitz theory

- Dynamical CE ⇐
- Lateral CE
- Extract energy from vacuum
- CE and the cosmological constant ⇐
The standard approach
The standard approach

Casimir force: calculated by computing change in zero point energy of the em field
The standard approach

⇒ Casimir force: calculated by computing change in zero point energy of the em field

⇒ But Casimir effects can be calculated as S-matrix elements: Feynman diagrams with ext. lines
The standard approach

Casimir force: calculated by computing change in zero point energy of the em field

But Casimir effects can be calculated as S-matrix elements: Feynman diagrams with ext. lines

In modern language the Casimir energy can be expressed in terms of the trace of the Greens function for the fluctuating field in the background of interest (conducting plates)

$$\mathcal{E} = \frac{\hbar}{2\pi} \text{Im} \int d\omega \text{ Tr } \int d^3x [G(x, x, \omega + i\epsilon) - G_0(x, x, \omega + i\epsilon)]$$
The standard approach

\Rightarrow Casimir force: calculated by computing change in zero point energy of the em field

\Rightarrow But Casimir effects can be calculated as S-matrix elements: Feynman diagrams with ext. lines

In modern language the Casimir energy can be expressed in terms of the trace of the Greens function for the fluctuating field in the background of interest (conducting plates)

$$\mathcal{E} = \frac{\hbar}{2\pi} \text{Im} \int d\omega \text{ Tr } \int d^3x \left[\mathcal{G}(x, x, \omega + i\epsilon) - \mathcal{G}_0(x, x, \omega + i\epsilon) \right]$$

\mathcal{G} full Greens function for the fluctuating field
\mathcal{G}_0 free Greens function

Trace is over spin
\(E_C = \langle \text{plates} \rangle - \langle \text{no plates} \rangle \)
\[E_C = \langle \text{plates} \rangle - \langle \text{no plates} \rangle \]

\[
\frac{1}{\pi} \text{Im} \int [G(x, x, \omega + i\epsilon) - G_0(x, x, \omega + i\epsilon)] = \frac{d\Delta N}{d\omega}
\]

change in the density of states due to the background
\[E_C = \langle \text{plates} \rangle - \langle \text{no plates} \rangle \]

\[
\frac{1}{\pi} \text{Im} \int [G(x, x, \omega + i\epsilon) - G_0(x, x, \omega + i\epsilon)] = \frac{d\Delta N}{d\omega}
\]

change in the density of states due to the background

⇒ A restatement of the Casimir sum over shifts in zero-point energies

\[
\frac{\hbar}{2} \sum (\omega - \omega_0)
\]
\[E_C = \langle \text{plates} \rangle - \langle \text{no plates} \rangle \]

\[
\frac{1}{\pi} \text{Im} \int [G(x, x, \omega + i\epsilon) - G_0(x, x, \omega + i\epsilon)] = \frac{d\Delta N}{d\omega}
\]

change in the density of states due to the background

\[\Rightarrow \text{A restatement of the Casimir sum over shifts in zero-point energies} \]

\[
\frac{\hbar}{2} \sum (\omega - \omega_0)
\]

\[\Rightarrow \text{Lippman-Schwinger eq. allows full Greens f, } G, \text{ be expanded as a series in free Green's f, } G_0, \text{ and the coupling to the external field} \]
\[E_C = \langle \text{plates} \rangle - \langle \text{no plates} \rangle \]

\[
\frac{1}{\pi} \text{Im} \int [G(x, x, \omega + i\epsilon) - G_0(x, x, \omega + i\epsilon)] = \frac{d\Delta N}{d\omega}
\]

change in the density of states due to the background

\[\text{A restatement of the Casimir sum over shifts in zero-point energies} \]

\[
\frac{\hbar}{2} \sum (\omega - \omega_0)
\]

\[\text{Lippman-Schwinger eq. allows full Greens f, } G, \text{ be expanded as a series in free Green’s f, } G_0, \text{ and the coupling to the external field} \]

\[\text{“Experimental confirmation of the Casimir effect doesn’t establish the reality of zero point fluct’s better than say the Lamb shift does” [R Jaffe e a] } \]
The main issue: S.A. Fulling et. al., hep-th/070209

energy **ALWAYS gravitates** therefore the energy density of the vacuum appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]
Vacuum Fluct & the Equival Principle

The main issue: S.A. Fulling et. al., hep-th/070209

energy ALWAYS gravitates therefore the energy density of the vacuum appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

Equivalent to a cosmological const \(\Lambda = 8\pi G \mathcal{E} \), \(\rho_c = \frac{3H^2}{8\pi G} \)
Vacuum Fluct & the Equival Principle

The main issue: S.A. Fulling et. al., hep-th/070209

energy ALWAYS gravitates therefore the energy density of the vacuum appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

Equivalent to a cosmological const \(\Lambda = 8\pi G \mathcal{E} \), \(\rho_c = \frac{3H^2}{8\pi G} \)

Observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

\(\Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \)
Vacuum Fluct & the Equivall Principle

- The main issue: S.A. Fulling et al., hep-th/070209
 - Energy \textit{ALWAYS gravitates} therefore the energy density of the vacuum appears on the rhs of Einstein’s equations:
 \[
 R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu})
 \]
 - Equivalent to a \textit{cosmological const} $\Lambda = 8\pi G \mathcal{E}$, $\rho_c = \frac{3H^2}{8\pi G}$
 - \textbf{Observations:} M. Tegmark et al. [SDSS Collab.] PRD 2004
 \[
 \Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3
 \]
 - \textbf{Question:} how finite Casimir energy of pair of plates \textit{couples} to gravity?
Vacuum Fluct & the Equival Principle

The main issue: S.A. Fulling et. al., hep-th/070209

Energy *ALWAYS* gravitates therefore the energy density of the vacuum appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G \left(\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu} \right) \]

Equivalent to a *cosmological const* \(\Lambda = 8\pi G \mathcal{E}, \quad \rho_c = \frac{3H^2}{8\pi G} \)

Observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

\[\Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]

Question: how finite Casimir energy of pair of plates couples to gravity?

Two ways to proceed. *Gauge-invariant* procedure:

energy-momentum tensor of the phys sys must be conserved, so include a physical mechanism holding the plates apart against the Casimir force

\[\rightarrow \text{ Leads to complicated model-dependent calculations} \]
Vacuum Fluct & the Equival Principle

- The main issue: S.A. Fulling et. al., hep-th/070209

 energy **ALWAYS gravitates** therefore the energy density of the vacuum appears on the rhs of Einstein’s equations:

 \[R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = -8\pi G (\tilde{T}_{\mu\nu} - \mathcal{E} g_{\mu\nu}) \]

- Equivalent to a **cosmological const** \(\Lambda = 8\pi G \mathcal{E}, \rho_c = \frac{3H^2}{8\pi G} \)

- **Observations:** M. Tegmark et al. [SDSS Collab.] PRD 2004
 \[\Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]

- **Question:** how finite Casimir energy of pair of plates **couples** to gravity?

- **Two ways** to proceed. **Gauge-invariant** procedure:
 energy-momentum tensor of the phys sys must be conserved, so include a physical mechanism holding the plates apart against the Casimir force
 \(\rightarrow \) Leads to **complicated** model-dependent calculations

- Alternative: find a **physically natural** coordinate system, more realistic than another: **Fermi** coord system [Marzlin '94]
Vacuum Fluct & the Equival Principle

- The main issue: energy ALWAYS gravitates therefore the energy density of the vacuum appears on the rhs of Einstein’s equations:

\[R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -8\pi G(\tilde{T}_{\mu\nu} - \mathcal{E}g_{\mu\nu}) \]

- Equivalent to a cosmological const \(\Lambda = 8\pi G\mathcal{E}, \rho_c = \frac{3H^2}{8\pi G} \)

- Observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

\[\Lambda = (2.14 \pm 0.13 \times 10^{-3} \text{ eV})^4 \sim 4.32 \times 10^{-9} \text{ erg/cm}^3 \]

- Question: how finite Casimir energy of pair of plates couples to gravity?

- Two ways to proceed. Gauge-invariant procedure:
 energy-momentum tensor of the phys sys must be conserved, so include a physical mechanism holding the plates apart against the Casimir force
 \[\rightarrow \text{ Leads to complicated model-dependent calculations} \]

- Alternative: find a physically natural coordinate system, more realistic than another: Fermi coord system [Marzlin ’94]

- Calculations done also in Rindler coord (uniform accel obs)
Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + \frac{m^2}{\hbar^2}, \quad k = \frac{2\pi}{\lambda} \]
Relativistic field: collection of harmonic oscillators (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = 2\pi/\lambda \]

Evaluating in a box and putting a cut-off at maximum \(k_{\text{max}} \) corresponding to QFT physics (e.g., Planck energy)

\[\frac{M_P}{M_{\text{ew}}} \sim 10^{16}, \quad \frac{M_P}{M_{\text{cc}}} \sim 10^{31}, \quad \rho \sim \frac{\hbar k_{\text{Planck}}^4}{16\pi^2} \sim 10^{123} \rho_{\text{obs}} \]

a thick aether! Caldwell, Carroll but Gómez, Dvali: species ↓ 10^{30}
CC Problem

- Relativistic field: collection of harmonic oscillators (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + \frac{m^2}{\hbar^2}, \quad k = \frac{2\pi}{\lambda} \]

- Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresponding to QFT physics (e.g., Planck energy)

\[\frac{M_P}{M_{ew}} \sim 10^{16}, \quad \frac{M_P}{M_{cc}} \sim 10^{31}, \quad \rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]

a thick aether! Caldwell, Carroll but Gómez, Dvali: species ↓ 10^{30}

- **Observational tests** see nothing (or very little) of it:

\[\Rightarrow (\text{new}) \text{ cosmological constant problem} \]
CC Problem

- Relativistic field: collection of harmonic oscillators (scalar field)
 \[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + \frac{m^2}{\hbar^2}, \quad k = \frac{2\pi}{\lambda} \]

- Evaluating in a box and putting a cut-off at maximum \(k_{max} \) corresponding to QFT physics (e.g., Planck energy)
 \[\frac{M_P}{M_{ew}} \sim 10^{16}, \quad \frac{M_P}{M_{cc}} \sim 10^{31}, \quad \rho \sim \frac{\hbar k_{Planck}^4}{16\pi^2} \sim 10^{123} \rho_{obs} \]
 a thick aether! Caldwell, Carroll but Gómez, Dvali: species ↓ \(10^{30} \)

- Observational tests see nothing (or very little) of it:
 \[\implies \text{(new) cosmological constant problem} \]

- Very difficult to solve and we do not address this question directly
 [Baum, Hawking, Coleman, Polchinsky, Weinberg,...]
CC PROBLEM

Relativistic field: collection of harmonic oscill’s (scalar field)

\[E_0 = \frac{\hbar c}{2} \sum_n \omega_n, \quad \omega = k^2 + m^2/\hbar^2, \quad k = \frac{2\pi}{\lambda} \]

Evaluating in a box and putting a cut-off at maximum \(k_{\text{max}} \) corresp’ng to QFT physics (e.g., Planck energy)

\[\frac{M_P}{M_{\text{ew}}} \sim 10^{16}, \quad \frac{M_P}{M_{\text{cc}}} \sim 10^{31}, \quad \rho \sim \frac{\hbar k_{\text{Planck}}^4}{16\pi^2} \sim 10^{123} \rho_{\text{obs}} \]

a thick aether! Caldwell, Carroll but Gómez, Dvali: species ↓ \(10^{30} \)

Observational tests see nothing (or very little) of it:

\[\implies \text{(new) cosmological constant problem} \]

Very difficult to solve and we do not address this question directly

[Baum, Hawking, Coleman, Polchinsky, Weinberg,...]

What we do consider —with relative success in some different approaches— is the additional contribution to the cc coming from the non-trivial topology of space or from specific boundary conditions imposed on braneworld models:

\[\implies \text{kind of cosmological Casimir effect} \]
A. Assuming one is able to prove that the ground value of the cc is zero [Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998] → left with this incremental value coming from the topology or BCs
A. Assuming one is able to prove that the ground value of the cc is zero [Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998] → left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude —corresponding to the one coming from the observed acceleration in the expansion of our universe— in some reasonable models involving:
A. Assuming one is able to prove that the ground value of the cc is zero [Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998] — left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude — corresponding to the one coming from the observed acceleration in the expansion of our universe — in some reasonable models involving:

(a) small and large compactified scales JPA39(06)6299
A. Assuming one is able to prove that the ground value of the cc is zero [Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998] → left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude — corresponding to the one coming from the observed acceleration in the expansion of our universe — in some reasonable models involving:

- (a) small and large compactified scales JPA39(06)6299
- (b) dS & AdS worldbranes hep-th/0209242
Assuming one is able to prove that the ground value of the cc is zero [Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998] → left with this incremental value coming from the topology or BCs.

We have shown (with different examples) that this value acquires the correct order of magnitude — corresponding to the one coming from the observed acceleration in the expansion of our universe — in some reasonable models involving:

(a) small and large compactified scales JPA39(06)6299
(b) dS & AdS worldbranes hep-th/0209242
(c) supergraviton theo’s (discret dims, deconstr) hep-th/0312269
A. Assuming one is able to prove that the ground value of the cc is zero [Dolgov 1983; Ford 1987, 2002; Tsamis & Woodard 1998] → left with this incremental value coming from the topology or BCs

We have shown (with different examples) that this value acquires the correct order of magnitude ―corresponding to the one coming from the observed acceleration in the expansion of our universe― in some reasonable models involving:

- (a) small and large compactified scales JPA39(06)6299
- (b) dS & AdS worldbranes hep-th/0209242
- (c) supergraviton theo’s (discret dims, deconstr) hep-th/0312269

B. Other alternatives: (i) L Faddeev 0911.0282 (Adler ’82) Newton const in E-H Lag has dim of mass → non-renormalizability
Describe gravity by vector field (as Higgs mechanism)
(ii) Porto & Zee 0910.3716 Dynamical critical behavior of gravity in euIR sector and a mechanism to relax the cc. Also Shapiro+Sola, ...
More recent alternatives (a sample)

(iii) E Mottola 1006.3567 Effective field theory approach
- Casimir effect in flat s-t and large quantum backreaction are effects at the horizon scale of cosmological s-t
- imply the cosmological VE is dynamical
- its value depends on macroscopic BCs at the cosm horizon scale, rather than on the extreme ultraviolet Planck scale [we, on both BCs]
More recent alternatives (a sample)

(iii) E Mottola 1006.3567 Effective field theory approach
– Casimir effect in flat s-t and large quantum backreaction
are effects at the horizon scale of cosmological s-t
– imply the cosmological VE is dynamical
– its value depends on macroscopic BCs at the cosm horizon scale,
 rather than on the extreme ultraviolet Planck scale [we, on both BCs]

(iv) T Padmanabhan Ad Sci Lett 2 74 09 cc problem and explaining
DE independent issues: first find mechanism to make the cc vanish
– new degrees of freedom, kind of ‘gauge freedom’
 to absorb any λ while maintaining general covariance
– could succeed in making gravity decouple from the bulk VE
– emergent gravity approach: thermodynamic description is far more
 general than just Einstein theory
– observed cc should be a relic of quantum gravitational physics and
 arise from degrees of freedom which scale as the surface area
– numerics: $L_A/L_P \sim \exp \sqrt{2} \pi^4 \sim 10^{60}$ (hierarchy squared) $\sim 10^{61}$
no attempt at explaining the old cc prob
– an extremely small quantum correction can in fact be produced quite naturally from a massive bulk field, introducing a massive bulk fermion
– naturally as superpartner of the radion field in a SUSY theory (especially the string theory realization) of brane-world scenario
– in particle physics Grossman and Neubert used a massive bulk fermion to understand the neutrino mass hierarchy
– use Goldberger-Wise mechanism where massive bulk scalar field with brane self-interaction induces stabilizing potential
– could overwhelm the small fermionic Casimir energy & sign?
(v) Shao & Chen 1005.1920 no attempt at explaining the old cc prob
– an extremely small quantum correction can in fact be produced
quite naturally from a massive bulk field, introducing a massive
bulk fermion
– naturally as superpartner of the radion field in a SUSY theory
(especially the string theory realization) of brane-world scenario
– in particle physics Grossman and Neubert used a massive bulk
fermion to understand the neutrino mass hierarchy
– use Goldberger-Wise mechanism where massive bulk scalar field
with brane self-interaction induces stabilizing potential
– could overwhelm the small fermionic Casimir energy & sign?

(vi) JA Dixon 1006.2334 CyberSUSY solves the cc problem
– a new mechanism for SUSY breaking
– its realization mixes elementary and composite states
– SUSY anomalies present, generates spectrum for SUSY breaking
consistent with known particles
– no cc generated, because SUSY is not spontaneously broken...
The Braneworld Case

1. Braneworld may help to solve:
 - the hierarchy problem
 - the cosmological constant problem

2. Presumably, the bulk Casimir effect will play a role in the construction (radion stabilization) of braneworlds
 [A Flachi]
 - Bulk Casimir effect (effective potential) for a conformal or massive scalar field
 - Bulk is a 5-dim AdS or dS space with 2/1 4-dim dS brane (our universe)
 - Consistent with observational data even for relatively large extra dimension

Previous work:
- flat space brane
- bulk conformal scalar field
- conclusion: no CE

We used zeta regularization at full power, with positive results!

EE, Odintsov, Saharian PRD79(2009)065023, 0902.0717 Repulsive Casimir effect from extra dimensions and Robin BC: from branes to pistons
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account
- Casimir calculation: attractive force
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account

Casimir calculation: attractive force

Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account

- Casimir calculation: attractive force

- Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

- Systematic calculation, for different fields, BCs, and dimensions
 J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls
The Sign of the Casimir Force

- Many papers dealing on this issue: here just short account

- Casimir calculation: **attractive** force

- Boyer got **repulsion** [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

- Systematic calculation, for different fields, BCs, and dimensions
 J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) **attract, repuls**

- Possibly not relevant at lab scales, but very important for cosmological models
The Sign of the Casimir Force

Many papers dealing on this issue: here just short account

Casimir calculation: attractive force

Boyer got repulsion [TH, Phys Rev, 174 (1968)] for a spherical shell. It is a special case requiring stringent material properties of the sphere and a perfect geometry and BC

Systematic calculation, for different fields, BCs, and dimensions
J Ambjørn, S Wolfram, Ann Phys NY 147, 1 (1983) attract, repuls

Possibly not relevant at lab scales, but very important for cosmological models

a mirror pair of dielectric bodies always attract each other
∃ of positive Hilbert space and self-adjoint non-negative Hamiltonian
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries
- E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(R^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

- The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

- Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a \textit{mathematically singular} operation (which introduces divergent edge contributions)
E.g. \(\exists \text{ correlation inequality: } \langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a mathematically singular operation (which introduces divergent edge contributions)

Theorem does not apply for
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^*\Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a \textit{mathematically singular} operation (which introduces divergent edge contributions)

Theorem does \textit{not} apply for

- mirror probes in a \textit{Fermi sea} (chemical-potential term), eg when electron-gas fluctuations become important
E.g. \(\exists \) correlation inequality: \(\langle f \Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(\mathbb{R}^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^* \Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of \textit{unitarity} only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a \textit{mathematically singular} operation (which introduces divergent edge contributions)

Theorem does not apply for

- mirror probes in a \textit{Fermi sea} (chemical-potential term), eg when electron-gas fluctuations become important
- periodic BCs for \textit{fermions}
E.g. ∃ correlation inequality: \(\langle f\Theta(f) \rangle > 0 \)

\(\Theta \) reflection with respect to a 3-dim hyperplane in \(R^4 \)

the action of \(\Theta \) on \(f \) is anti-unitary \(\Theta(cf) = c^*\Theta(f) \)

The existence of the reflection operator \(\Theta \) is a consequence of unitarity only, and makes no assumptions about the discrete \(C, P, T \) symmetries

Boyer’s result does not contradict the theorem, since cutting an elastic shell into two rigid hemispheres is a **mathematically singular** operation (which introduces divergent edge contributions)

Theorem does not apply for

- mirror probes in a Fermi sea (chemical-potential term), eg when electron-gas fluctuations become important
- periodic BCs for fermions
- Robin BCs in general
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space.
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space.

Most general case: constants in the BCs different for the two plates. It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces.
Casimir eff in brworl’s w large extra dim

- Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space.

- Most general case: constants in the BCs different for the two plates.
 It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces.

- Robin type BCs are an extension of Dirichlet and Neumann’s
 most suitable to describe physically realistic situations.
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $R^{(D_1-1,1)} \times \Sigma$, Σ compact internal space.

Most general case: constants in the BCs different for the two plates. It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces.

Robin type BCs are an extension of Dirichlet and Neumann’s, most suitable to describe physically realistic situations.

Genuinely appear in: vacuum effects for a confined charged scalar field in external fields [Ambjørn ea 83], spinor and gauge field theories, quantum gravity and supergravity [Luckock ea 91].

Can be made conformally invariant, purely-Neumann conditions cannot needed for conformally invariant theories with BC, to preserve cf invar.
Casimir energy for massive scalar field with an arbitrary curvature coupling, obeying Robin BCs on two codim-1 parallel plates embedded in background spacetime $\mathbb{R}^{(D_1-1,1)} \times \Sigma$, Σ compact internal space

Most general case: constants in the BCs different for the two plates
It is shown that Robin BCs with different coefficients are necessary to obtain repulsive Casimir forces

Robin type BCs are an extension of Dirichlet and Neumann’s
⇒ most suitable to describe physically realistic situations

Genuinely appear in: ⇒ vacuum effects for a confined charged scalar field in external fields [Ambjørn ea 83],
⇒ spinor and gauge field theories,
⇒ quantum gravity and supergravity [Luckock ea 91]
Can be made conformally invariant, purely-Neumann conditions cannot
⇒ needed for conformally invariant theories with BC, to preserve cf invar

Quantum scalar field with Robin BCs on boundary of cavity violates Bekenstein’s entropy-to-energy bound near certain points in the space of the parameter defining the boundary condition [Solodukhin 01]
Gravity Eqs as Eqs of State: $f(R)$ Case

The cosmological constant as an “integration constant”
T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
Unimodular Gravity Also I Shapiro, J Solà, ... cc RG flow
Gravity Eqs as Eqs of State: $f(R)$ Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
 Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only
Gravity Eqs as Eqs of State: $f(R)$ Case

The cosmological constant as an “integration constant”
T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer
Gravity Eqs as Eqs of State: $f(R)$ Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
 Unimodular Gravity
 Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context: Einstein’s Eqs are to be viewed as EoS
Gravity Eqs as Eqs of State: f(R) Case

- The cosmological constant as an "integration constant"
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...
 Unimodular Gravity
 Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context:
 Einstein’s Eqs are to be viewed as EoS

- Should, probably, not be taken as basic for quantizing gravity
Gravity Eqs as Eqs of State: $f(R)$ Case

- The cosmological constant as an “integration constant”
 T. Padmanabhan; D. Blas, J. Garriga, E. Alvarez ...

- Unimodular Gravity Also I Shapiro, J Solà,... cc RG flow

- Ted Jacobson [PRL1995] obtained Einstein’s equations from local thermodynamics arguments only

- By way of generalizing black hole thermodynamics to space-time thermodynamics as seen by a local observer

- This strongly suggests, in a fundamental context: Einstein’s Eqs are to be viewed as EoS

- Should, probably, not be taken as basic for quantizing gravity

- C. Eling, R. Guedens, T. Jacobson [PRL2006]: extension to polynomial $f(R)$ gravity but as non-equilibrium thermodyn. Also Erik Verlinde (private discussions)
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proportional to variation of the horizon area: \[\delta S = \eta \delta A \]
- local temperature \(T \) defined as Unruh temp: \(T = \frac{\hbar k}{2\pi} \)
- functional dependence of \(S \) wrt energy and size of system
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

– entropy proport to variation of the horizon area: \(\delta S = \eta \delta A \)
– local temperature \(T \) defined as Unruh temp: \(T = \hbar k / 2\pi \)
– functional dependence of \(S \) wrt energy and size of system

Key point in our generalization: the definition of the local entropy (Iyer+Wald 93: local boost inv, Noether charge)

\[S = -2\pi \int_{\Sigma} E_{pq}^{pqrs} \epsilon_{pq} \epsilon_{rs}, \quad \delta S = \delta (\eta e A) \]

\(\eta e \) is a function of the metric and its deriv’s to a given order

\[\eta e = \eta e \left(g_{ab}, R_{cdef}, \nabla^{(l)} R_{pqrs} \right) \]
Jacobson’s argument: basic thermodynamic relation

\[\delta Q = T \delta S \]

- entropy proport to variation of the horizon area: \(\delta S = \eta \delta A \)
- local temperature \(T \) defined as Unruh temp: \(T = \hbar k/2\pi \)
- functional dependence of \(S \) wrt energy and size of system

Key point in our generalization: the definition of the local entropy (Iyer+Wald 93: local boost inv, Noether charge)

\[
S = -2\pi \int_\Sigma E^{pqrs}_R \epsilon_{pq} \epsilon_{rs}, \quad \delta S = \delta (\eta_e A)
\]

\(\eta_e \) is a function of the metric and its deriv’s to a given order

\[\eta_e = \eta_e (g_{ab}, R_{cdef}, \nabla^{(l)} R_{pqrs}) \]

Case of \(f(R) \) gravities: \(L = f(R, \nabla^n R) \)
Also the concept of an **effective Newton constant** for graviton exchange *(effective propagator)*

\[
\frac{1}{8\pi G_{\text{eff}}} = E_R^{pqrs} \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \epsilon_{pq} \epsilon_{rs} \\
= \frac{\partial f}{\partial R} = \frac{\eta_e}{2\pi}, \quad S = \frac{A}{4G_{\text{eff}}}
\]
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E^p_{\quad qr} \varepsilon_{pq} \varepsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \varepsilon_{pq} \varepsilon_{rs} = \frac{\partial f}{\partial R} = \frac{\eta_e}{2\pi}, \quad S = \frac{A}{4 G_{\text{eff}}}
\]

For these theories, the different polarizations of the gravitons only enter in the definition of the effective Newton constant through the metric itself.
Also the concept of an effective Newton constant for graviton exchange (effective propagator)

\[
\frac{1}{8\pi G_{\text{eff}}} = E_{R}^{pqrs} \epsilon_{pq} \epsilon_{rs} = \frac{\partial f}{\partial R} (g^{pr} g^{qs} - g^{qr} g^{ps}) \epsilon_{pq} \epsilon_{rs}
\]

\[
= \frac{\partial f}{\partial R} = \frac{\eta_{e}}{2\pi}, \quad S = \frac{A}{4 G_{\text{eff}}}
\]

For these theories, the different polarizations of the gravitons only enter in the definition of the effective Newton constant through the metric itself

Final result, for \(f(R) \) gravities:

the local field equations can be thought of as an equation of state of equilibrium thermodynamics (as in the GR case)
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics

EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics

EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy

RM Wald PRD1993; V Iyer, RM Wald PRD1994
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton exchange (effective propagator)
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton exchange (effective propagator)

S-F Wu, G-H Yang, P-M Zhang, arXiv:0805.4044, direct extension of our results to Brans-Dicke and scalar-tensor gravities
Jacobson’s argument non-trivially extended to $f(R)$ gravity field eqs as EoS of local space-time thermodynamics
EE, P. Silva, Phys Rev D78, 061501(R) (2008), arXiv:0804.3721v2

By means of a more general definition of local entropy, using Wald’s definition of dynamic BH entropy
RM Wald PRD1993; V Iyer, RM Wald PRD1994

And also the concept of an effective Newton constant for graviton exchange (effective propagator)

S-F Wu, G-H Yang, P-M Zhang, arXiv:0805.4044, direct extension of our results to Brans-Dicke and scalar-tensor gravities
T Zhu, Ji-R Ren and S-F Mo, arXiv:0805.1162 [gr-qc];