News & Press releases

Nombre d'entrades: 119

Juny 2017

CTA Prototype Telescope, ASTRI,Achieves First Light

First light of ASTRI, a proposed Small-Sized Telescope design for CTA
During the nights of 25 and 26 May, the camera of the ASTRI telescope prototype (pictured to the left) recorded its first ever Cherenkov light while undergoing testing at the astronomical site of Serra La Nave (Mount Etna) in Sicily managed by INAF-Catania. This comes not long after its optical validation was achieved in November 2016. This accomplishment was the first optical demonstration for astronomical telescopes using the novel Schwarzschild Couder dual-mirror design. The ASTRI telescope is a proposed Small-Sized Telescope design for the Cherenkov Telescope Array (CTA).

Although the camera was not fully configured, the ASTRI team was still able to capture its first Cherenkov light and produce beautiful images of the showers generated by cosmic rays in the Earth’s atmosphere. The camera was specifically designed to fit on the dual mirror ASTRI telescopes for covering a large field of view of 10 x 10 degrees.

Three classes of telescope types are required to cover the full CTA very-high energy range (20 GeV to 300 TeV): Medium-Sized Telescopes (12 m diameter dish) will cover CTA’s core energy range (100 GeV to 10 TeV) while the Large-Sized Telescopes (23 m) and Small-Sized Telescopes (4 m) or SSTs are planned to extend the energy range below 100 GeV and above a few TeV, respectively. The ASTRI telescope is one of three proposed SST designs being prototyped and tested for CTA’s southern hemisphere array. It uses an innovative dual-mirror Schwarzschild-Couder configuration with a 4.3 m diameter primary mirror and a 1.8 m monolithic secondary mirror.
Juny 2017

The review by ICREA Professor S.D. Odintsov is accepted in Physics Reports.

The review by ICREA Professor S.D. Odintsov is accepted in Physics Reports.
The review paper by S.Nojiri, S.D. Odintsov and V. Oikonomou, Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution, arXiv:1705.11098 is accepted for publication in Physics Reports. With Impact Factor over 16, this is one of the leading journals in Physics and Astronomy.
Juny 2017

Scientists of the Euclid Consortium announce the release of the largest simulated galaxy catalogue ever built

Scientists of the Euclid Consortium announce the release of the largest simulated galaxy catalogue ever built
Galaxy types in the Flagship mock
J. Carretero/P. Tallada/S. Serrano for ICE/PIC/U.Zurich and the Euclid Consortium Cosmological Simulations SWG
Euclid is a space mission of the European Space Agency ( that will map the geometry of the dark Universe and the cosmic history of structure formation in the Universe by taking images and spectra of thousands of millions of galaxies.

The mission, to be launched in 2020, will provide a wealth of unprecedented high quality data collected with two different instruments: an imager at visible wavelenths (VIS) and an spectro-photometer in the near infrared (NISP) . VIS and NISP are built by the Euclid Consortium (  ), an organisation that brings together international teams of astronomers and physicists in charge of the production of the data and the scientific exploitation of the Euclid mission. The combination of these two powerful instruments will provide a unique window to the early stages of evolution of the universe. In particular, it will shed light on the nature of the mysterious dark-energy that drives the observed accelerated expansion of the universe, and test Einstein's general relativity theory on the largest cosmological scales.

Mining this big and complex cosmological dataset is a formidable challenging task involving ESA and hundreds of scientists of the Euclid Consortium from 14 European countries (Austria, Belgium, Denmark, Finland, France, Germany, Italy, the Netherlands, Norway, Portugal, Romania, Spain, Switzerland and United Kingdom), the United States and Canada. A key ingredient in order to prepare the scientific exploitation of this "golden" dataset is the development of synthetic observations of the real survey: a cosmological simulation that matches the expected volume and complexity of the real data. In a massive coordinated effort, a team of scientists of the Euclid project have worked together over the last year to develop the largest simulated galaxy catalogue ever produced, the so-called "Euclid Flagship" mock galaxy catalogue.

The Euclid Flagship mock galaxy catalogue is based on the record-setting 2 trillion (2 followed by 12 zeros) dark-matter particle simulation performed on the supercomputer Piz Daint, hosted by the Swiss National Supercomputing Center (CSCS). The simulation code was developed by a team of scientists at the University of Zurich, led by Joachim Stadel from the Institute for Computational Science. This unique dataset reproduces with exquisite precision the emergence of the large scale structure of the Universe, with hundred of billions of dark matter halos hosting the galaxies we see in the night sky today.

Using this dark-matter cosmic web from the Flagship simulation, a group of scientists of the Euclid Consortium at Institut de Ciències de L'Espai (ICE, IEEC-CSIC) and Port d’Informació Científica (PIC) in Barcelona, in collaboration with the Cosmological Simulations Working Group, led by Pablo Fosalba (ICE, IEEC-CSIC) and Romain Teyssier (Institute for Computational Science at the University of Zurich), have built a synthetic galaxy catalogue using state-of-the-art scientific pipelines that implement the Halo Occupation Distribution technique, a sophisticated recipe to relate dark and luminous matter in the universe.

The Euclid Flagship mock galaxy catalogue contains more than 2 thousand million galaxies distributed over the 3-dimension cosmological volume that Euclid will survey. Synthetic galaxies in this simulation mimic with great detail the complex properties that real sources display: ranging from their shapes, colours, luminosities, and emission lines in their spectra, to the gravitational lensing distortions that affect the light emitted by distant galaxies as it travels to us, the observers.  A dedicated web portal, CosmoHub ( hosted by PIC, the Euclid Spanish Science Data Center, will distribute the Flagship mock data to the 1000+ members of the Euclid Consortium.

Armed with this new virtual universe, scientists will be able to assess the performance of the Euclid mission as a whole, the so-called Science Performance Verification. The Science Performance Verification exercise uses a full end to end simulation of the Euclid mission developed by ESA and the Euclid Consortium and represents a critical milestone of the project.  Moreover the Euclid Flagship mock will be an essential tool to develop the data processing and the science analysis pipelines developed by the Euclid Science ground Segment and the Science Working Groups and will set the science for the exciting discoveries that await the Euclid mission when the real data shall come.

Image 1: Euclid Flagship mock galaxy catalogue (TIFF: 97 MB)

Caption image 1: Euclid Flagship mock galaxy catalogue

False colour images showing a small portion (0.3%) of the full light-cone simulation of mock galaxies in the Euclid survey.

Light-cone stripes extend 500 Mpc/h (vertical) x 3800 Mpc/h (horizontal axis). The 2-dimension "pencil beam" images result from a slice of the 3-dimension light-cone, projected from a 40 Mpc/h width (in the direction orthogonal to the image plane).

From top to bottom, panels display the full sample of galaxies in the mock, and the sub-samples expected from observations in the VIS and NISP-Halpha channels.

The galaxy mock has been produced using a Halo Occupation Distribution pipeline developed by the Institut de Ciències de l'Espai (ICE) and Port d'Informació Científica (PIC) in Barcelona, and it is based on the 2 trillion dark-matter particle Flagship run produced by U.Zurich.

Image 2: Galaxy types in the Flagship mock (TIFF: 208 MB)

Caption image 2: Galaxy types in the Flagship mock

Top panel: False colour images showing a small portion (0.3%) of the full light-cone simulation (similar to Image 1), but showing different galaxy types with different colours. Central galaxies are coloured in green, and satellites in red.

Bottom panel: zoom in of the top panel image that displays the local universe with greater detail. Central galaxies populate all dark-matter halos of the cosmic web, whereas satellite galaxies tend to reside in the most massive halos, that is, in the highest density peaks of the underlying dark-matter distribution.

Credit: J. Carretero/P. Tallada/S. Serrano for ICE/PIC/U.Zurich and the Euclid Consortium Cosmological Simulations SWG

For further information please contact:

Francisco Castander
Galaxy Mock Production Work Package Lead

Pablo Fosalba
Cosmological Simulations SWG Lead

Yannick Mellier
Euclid Consortium Lead

Joachim Stadel
Large N-Body Simulations Work Package Lead

Romain Teyssier
Cosmological Simulations SWG Lead
Maig 2017

La compleja vuelta atrás

Interview to Nanda Rea published in: El Periodico
Los recortes han reducido al mínimo los mecanismos de atracción de talento, pero los investigadores migrantes siguen encontrando atractivo hacer ciencia en España. Una investigadora asturiana «fugada» al Reino Unido, una gallega que ha vuelto a España y una italiana afincada en Barcelona reflexionan sobre los incentivos para investigar en España.  
Maig 2017

Charla de Kip Thorne el 26 Mayo a 18:00 en el Auditorio de La Pedrera

Charla de Kip Thorne el 26 Mayo a 18:00 en el Auditorio de La Pedrera
La Fundació Catalunya-La Pedrera y el Instituto de Ciencias Fotónicas (ICFO), en colaboración con el Instituto de Ciencias del Cosmos de la Universidad de Barcelona (ICCUB), el Instituto de Física de Altas Energías (IFAE), el Instituto de Ciencias del Espacio (ICE-CSIC) y el Instituto de Estudios Espaciales de Cataluña (IEEC) os presentan la conferencia de   Dr. Kip Thorne   Feynman Professor de física teórica, emérito, en el marco de la Cátedra Ignacio Cirac - Fundació Catalunya-La Pedrera de ICFO el dia 26 de mayo a las 18:00 en el auditorio de La Pedrera.   Las ondas gravitacionales son ondulaciones en el tejido del espacio y el tiempo que fueron predichas por Albert Einstein hace 100 años. Después de medio siglo de esfuerzo, los seres humanos hemos tenido nuestro primer contacto con estas ondas. LIGO (the Laser Interferometer Gravitational-wave Observatory) ha detectado y descifrado las ondas producidas por dos agujeros negros colisionando a mil millones de años luz de la Tierra.   La conferencia tendrá el título "Exploring the Universe with Gravitational Waves: From the Big Bang to Black Holes”.  El Dr. Thorne hablará del proyecto LIGO, el cual cofundó, y sus descubrimientos, así como del futuro de la astronomía de ondas gravitacionales.   La conferencia, de carácter divulgativo, va dirigida al público general interesado en la exploración científica de la Naturaleza.   El acto es gratuito. Os rogamos por favor que confirméis vuestra asistencia registrándoos en Debido al aforo limitado del auditorio, os animamos a registraros lo antes posible y os rogamos que nos aviséis en caso de no poder asistir para poder liberar vuestra plaza.  
Març 2017

The Mysterious Magnetism of White Dwarfs

The Editors of the APS Physics choose to comment on a paper by our researchers (Isern et al., ApJL 836, L28, 2017)
The Editors of the APS Physics choice this paper of our researchers
The compact corpses of certain stars, called white dwarfs, are known to be the evolutionary endpoint for many luminous celestial bodies. But astronomers have yet to uncover the reason for their magnetic fields. One research team decided to investigate—and related it to our Jovian neighbor. Isern et al., writing in Astrophysical Journal Letters, analyzed and compared the convective motion in white dwarfs to the same process that generates intense magnetic fields on the surface of Jupiter, known as a dynamo. As white dwarfs evolve and cool to lower temperatures, they end up with two main constituent elements, carbon and oxygen, which crystallize to form a carbon-rich mantle on top of a solid core of denser oxygen. The team calculated the properties of white dwarfs within 65 light years from the sun, and they found that the stars with high magnetic fields would have more convective activity within the carbon mantle, leading to higher dynamo energy. While their calculations only sample single white dwarfs, the team has made progress in ruling out other long-standing hypotheses such as binary mergers or amplification of progenitor magnetic fields.

Link to the paper: The Mysterious Magnetism of White Dwarfs  
Març 2017

Un experiment de l'Institut de Ciències de l'Espai per fer mesures de pluja intensa es posarà en òrbita a finals del 2017

L'ICE realitzarà un experiment a bord del satèl·lit espanyol PAZ per intentar, per primer cop, mesurar pluges intenses utilitzant GPS.
Representació artística de l'experiment ROHP a bord del satèl.lit PAZ
Barcelona, 10 de març del 2017. L'Institut de Ciències de l'Espai del Consell Superior d'Investigacions Científiques i de l’Institut d'Estudis Espacials de Catalunya (ICE-CSIC/IEEC), que està situat al Campus de la UAB, realitzarà un experiment a bord del satèl·lit espanyol PAZ per intentar, per primer cop, mesurar els perfils verticals de les pluges intenses utilitzant els senyals transmesos pels satèl·lits de navegació global (GPS). Aquest experiment, anomenat Radio Ocultacions i Precipitació Intensa a bord de PAZ (ROHP-PAZ, acrònim en anglès) permetrà demostrar un nou mètode de mesura ideat per el grup d'observació de la Terra de l'ICE-CSIC/IEEC.   Actualment no és possible d'adquirir aquest tipus de mesures conjuntes des d'un sol instrument, i en conseqüència els fenòmens de pluja intensa no estan ben entesos ni ben representats en els models actuals de meteorologia i clima. Si es confirma la validesa del mètode, aquesta tècnica permetrà caracteritzar les estructures de pluja intensa conjuntament amb les seves propietats termodinàmiques (pressió i temperatura), i així millorar-ne el seu coneixement, el seu modelatge, i la predicció de l'evolució d'aquests tipus de fenòmens en la perspectiva del canvi climàtic. L'experiment ROHP-PAZ ha estat concebut i liderat per l'ICE-CSIC/IEEC, i finançat pel Ministeri d'Economia i Competitivitat. Compta amb acords amb l'Administració Oceànica i Atmosfèrica Nordamericana (NOAA) i la Corporació d'Universitats Nordamericanes per a la Recerca Atmosfèrica (UCAR), qui proveiran els serveis de meteorologia mundials amb dades de ROHP-PAZ per a la seva assimilació en els models de predicció del temps. L'experiment compta també amb el suport del centre de la NASA i de Caltech 'Jet Propulsion Laboratory' (NASA/JPL), on es realitzaran part dels estudis científics relacionats amb el nou concepte de mesura. El 7 de març del 2017 HISDESAT, l'empresa responsable del satèl.lit PAZ, va anunciar ( que havia arribat a un acord amb l'empresa SpaceX per al llançament del satèl·lit, el qual està previst per al darrer trimestre de 2017. Les dades de l'experiment estaran disponibles pocs mesos després. La pàgina web conté més informació sobre ROHP-PAZ i servirà de punt d'accés a les seves dades. Vídeos divulgatius en versions catalana, castellana i anglesa es poden trobar als següents enllaços. Aquests vídeos poden ser utilitzats pels mitjans per a il·lustrar les seves informacions: Versió catalana: Versió castellana: Versió anglesa: Podeu contactar amb els científics responsables de l’ICE-CSIC/IEEC a través de l’adreça
Febrer 2017

11 de febrero: Día internacional de la mujer y la niña en la ciencia en el ICE (IEEC - CSIC)

Fotografía de las científicas del ICE en el día internacional de la mujer y la niña en la ciencia
Women of the ICE (IEEC-CSIC)
Aunque no están todas, el grupo de científicas, administrativas y auxiliares del ICE (IEEC-CSIC) celebra el día internacional de la mujer y la niña en la ciencia. Un día que se amplía a los 365 días del año.
Gener 2017

Record-breaking Rapid-Fire Nova erupts for the 9th time in as many years

Researchers at the Institute of Space Sciences (IEEC-CSIC) are leading its study
The Andromeda Galaxy M31 with the position of nova M31N 2008-12a marked by a blue star symbol
Tautenburg observatory
Just before Christmas, on December 12, astronomers announced a new eruption of the most extreme Nova system known to date. The star with the catalogue name "M31N 2008-12a" resides in the Andromeda galaxy - the 2.5 million lightyears distant neighbour of our own Galaxy. Since its discovery in December 2008, this Rapid-Fire Nova has surprised researchers with eruptions more frequent than ever seen before; swiftly becoming one of the most popular observing targets. Astronomers at ICE are playing a leading role in an international team that is at the forefront of this exciting new research.
  Recurrent Novae - Regular Fireworks  
Nova outbursts are among the most powerful eruptions in the universe. They occur in binary star system consisting of a star like our sun (or sometimes an aging giant star) and a compact White Dwarf star orbiting one another at a relatively close distance. The dense and heavy dwarf star gradually steals material from its companion until it has accumulated enough matter to ignite a spectacular explosion. Within hours, a shell of previously collected material is ejected again at high speeds and temperatures, creating a huge, temporary “new star” - the eponymous Nova that lets the star shine hundreds of thousands times brighter than before. As the shell expands further it cools and fades away, making the star disappear back into obscurity. Unlike the more powerful Supernovae, a Nova does not explode its host White Dwarf but only throws off the accumulated shell. Soon after, the White Dwarf begins to collect new material towards the next eruption. The time between eruptions can be years or millenia. Novae that have shown more than a single eruption are called “Recurrent Novae”.
  The most reliable Eruptions in the Universe  
One recently discovered Recurrent Nova is breaking all the records: “Our new Rapid-Fire Nova erupts at a much faster rate than any other Nova”, says Martin Henze, a postdoctoral researcher at the Institute of Space Sciences (IEEC-CISC), who is one of the leaders of the global collaboration which studies this fascinating object. In astronomical terms, the eruptions are also exceptionally predictable. “We observe a new event every 350 days”, Henze explains, “and rarely it happens more than a few weeks away from the predicted date.” The opportunity to study a large number of eruptions within only a few decades opens up completely new avenues for Nova research. Professor Margarita Hernanz, working with Henze at the Institute of Space Sciences, emphasises the large impact of this discovery: “The evolution of the binary star system through many, many Nova cycles is something that we could always study only in computer simulations. Now, for the first time, we can actually observe it in real time.”  
Towards a spectacular culmination?
Its clock-work like reliability over the last nine years has firmly established the Rapid-Fire Nova as a promising research target for decades to come. But what lies ahead for the binary system? Ultimately, the White Dwarf could gather enough material from its companion star to be pushed beyond a critical mass and explode as a bright Supernova - tens of thousands of times more powerful than the already luminous Nova eruption. Supernovae are critically important for many frontier research fields in astronomy today, from Cosmology to Dark Energy. How a star reaches its critical mass to become a Supernova, however, is still one of the big enigmas. Inspired by the new discovery of the Rapid-Fire Nova, recent theoretical models predict that this system might reach its critical mass within the next million years - a short time in astronomical terms. This makes it the best pre-explosion candidate known today.

Over the coming years, further observations are needed to tie down the model parameters and understand the physics of this exceptional Rapid-Fire Nova. Together with their international team of researchers, Henze and Hernanz are building an astronomical legacy. They are excited by the prospects and by a self-imposed challenge that is unusual for a Nova researcher: “Normally, people wait decades for a Recurrent Nova to erupt again. Now, we want to make sure that we publish the new results before the next eruption happens.”, Henze concludes. This year, the team managed to achieve this goal with remarkable precision: An extensive study of the 2015 eruption was published by The Astrophysical Journal on December 13, the day after the 2016 eruption provided an early Christmas present.
  Article references  
M. J. Darnley, M. Henze, M. F. Bode, I. Hachisu, M. Hernanz, K. Hornoch, R. Hounsell, M. Kato, J.-U. Ness, J. P. Osborne, K. L. Page, V. A. R. M. Ribeiro, P. Rodriguez-Gil, A. W. Shafter, M. M. Shara, I. A. Steele, S. C. Williams, A. Arai, I. Arcavi, E. A. Barsukova, P. Boumis, T. Chen, S. Fabrika, J. Figueira, X. Gao, N. Gehrels, P. Godon, V. P. Goranskij, D. J. Harman, D. H. Hartmann, G. Hosseinzadeh, J. Chuck Horst, K. Itagaki, J. Jose, F. Kabashima, A. Kaur, N. Kawai, J. A. Kennea, S. Kiyota, H. Kucakova, K. M. Lau, H. Maehara, H. Naito, K. Nakajima, K. Nishiyama, T. J. O'Brien, R. Quimby, G. Sala, Y. Sano, E. M. Sion, A. F. Valeev, F. Watanabe, M. Watanabe, B. F. Williams, Z. Xu. M31N 2008-12a - the remarkable recurrent nova in M31: Pan-chromatic observations of the 2015 eruption. The Astrophysical Journal. 833, 149 (2016).

M. Henze, J.-U. Ness, M. J. Darnley, M. F. Bode, S. C. Williams, A. W. Shafter, G. Sala, M. Kato, I. Hachisu, M. Hernanz. A remarkable recurrent nova in M 31: The predicted 2014 outburst in X-rays with Swift. Astronomy & Astrophysics. 580, A46. (2015)

M. Henze, J.-U. Ness, M.J. Darnley, M.F. Bode, S.C. Williams, A.W. Shafter, M. Kato, I. Hachisu. A remarkable recurrent nova in M31 - The X-ray observations. Astronomy & Astrophysics. 563, L8. (2014)
Octubre 2016

The Gravitational Astronomy-LISA group participates in the recently approved COST action "Gravitational waves, black holes and fundamental physics"

The Gravitational Astronomy-LISA group participates in the COST action "Gravitational waves, black holes and fundamental physics"
Gravitational Astronomy-LISA Group
The Gravitational Astronomy-LISA group participates in one of the 25 COST actions approved by the Committee of Senior Officials on 24 October 2016.  The name of the COST action is CA16104 - Gravitational waves, black holes and fundamental physics.   Carlos F. Sopuerta is a member of the Network of proposers.
The Action will target International cooperation in the area of gravitational wave astronomy (with focus on its impact to black hole and fundamental physics) by bringing together at least 13 different countries. The Action will produce a number of multimedia contents and outreach events, including one short-movie, a TV documentary and a book which will be distributed in all of Europe, disseminating knowledge on gravitational physics and raising awareness for this science in Europe.          
Institute of Space Sciences (IEEC-CSIC)

Campus UAB, Carrer de Can Magrans, s/n
08193 Barcelona.
Phone: +34 93 737 9788
Website developed with RhinOS


An institute of the Consejo Superior de Investigaciones Científicas

An institute of the Consejo Superior de Investigaciones Científicas
Affiliated with the Institut d'Estudis Espacials de Catalunya

Affiliated with the Institut d'Estudis Espacials de Catalunya