News & Press releases

Número de entradas: 96

10
Enero 2018

El Dark Energy Survey hace públicos los datos de sus tres primeros años


El Dark Energy Survey hace públicos los datos de sus tres primeros años
También anuncia el descubrimiento de once corrientes estelares, la evidencia de que la Vía Láctea devoró galaxias enanas. Investigadores del Institut de Ciències de l'Espai (IEEC-CSIC), el Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas (CIEMAT), el Institut de Física d'Altes Energies (IFAE) y el Instituto de Física Teórica (UAM-CSIC) participan en la obtención de estos resultados.

Barcelona/Madrid, 10 de enero de 2018

Durante una sesión especial en la reunión de la Sociedad Americana de Astronomía que se celebra actualmente en Washington D. C., los científicos del Dark Energy Survey (DES) han anunciado la publicación de los datos de sus tres primeros años de operación. Esta primera distribución pública de datos del cartografiado contiene información acerca de unos 400 millones de objetos astronómicos, que incluyen tanto galaxias lejanas, a distancias de miles de millones de años luz, como estrellas en nuestra propia galaxia.  

Los científicos de DES están utilizando estos datos para estudiar la energía oscura, la misteriosa fuerza responsable de que la expansión del universo se esté acelerando, y han presentado algunos de sus resultados en la sesión especial de la reunión de Washington. Como parte de dicha sesión, también han anunciado el descubrimiento de once nuevas corrientes estelares, remanentes de galaxias más pequeñas, desmembradas y devoradas por la Vía Láctea.

Al hacer públicos los datos de los tres primeros años de operación, DES cumple un compromiso que los científicos del proyecto habían adquirido para compartir sus hallazgos con la comunidad astronómica y con el público. Los datos cubren el área que explora DES al completo (alrededor de 5.000 grados cuadrados, o lo que es lo mismo, un octavo del cielo) e incluyen más de 100.000 exposiciones tomadas con la Dark Energy Camera (DECam). Las imágenes corresponden a cientos de terabytes de datos y se hacen públicas junto a catálogos de cientos de millones de galaxias y estrellas.

“Este inmenso repositorio de información sobre nuestro universo es el resultado de un esfuerzo de muchos años por parte del consorcio DES y se puede ver en la calidad de los datos puestos a disposición del público por primera vez. Estamos ansiosos por ver qué hace la comunidad con estas imágenes y catálogos y sorprendernos con los nuevos descubrimientos que sin duda nos aguardan,” afirma Ignacio Sevilla Noarbe, investigador en el CIEMAT y uno de los científicos responsables de la puesta a punto de los datos que ahora se hacen públicos.

Los datos de DES se pueden acceder públicamente en este enlace: https://des.ncsa.illinois.edu/releases/dr1

La cámara DECam, la herramienta principal del Dark Energy Survey, es uno de los dispositivos de toma de imágenes digitales más potentes que existen. Se ensambló y probó en Fermilab, el laboratorio que lidera DES, y está montada en el telescopio de 4m Víctor M. Blanco, en el Observatorio de Cerro Tololo, en Chile. El grupo DES-Spain, formado por CIEMAT, IEEC/CSIC, IFAE y UAM/IFT, contribuyó de manera destacada a la construcción de DECam. En particular diseñó, construyó y validó  la electrónica, y ha puesto en marcha el sistema de guiado, entre otras contribuciones. Es uno de los socios fundadores de la colaboración DES, y cuenta con financiación del MINECO, IEEC, CSIC y Generalitat de Cataluña.

Las imágenes de DES se procesan en el National Center for Supercomputing Applications (NCSA) en la Universidad de Illinois en Urbana-Champaign (EE. UU.).

“Nos emociona que estos datos de alta calidad se pongan a disposición de investigadores de todo el planeta.” comenta el chileno Matías Carrasco-Kind, científico principal en esta publicación del equipo de gestión de datos de NCSA. “Aunque DES fue diseñado con el objetivo de comprender la energía y materia oscuras, la gigantesca cantidad de datos de estas imágenes proporcionarán nuevas aplicaciones científicas, retos y oportunidades de descubrimiento para astrónomos y científicos de datos. En colaboración con el NOAO y el equipo de LineA en Brasil, vamos a proveer herramientas y recursos para acceder y analizar este conjunto de datos de gran riqueza y robustez.”

Un descubrimiento que ha sido posible gracias a este conjunto de datos es la detección de once nuevas corrientes estelares alrededor de nuestra galaxia, la Vía Láctea, algunas de las cuales pueden verse en la imagen adjunta. Nuestro hogar cósmico está rodeado de un halo masivo de materia oscura, que ejerce una poderosa fuerza de atracción gravitacional sobre galaxias pequeñas y cercanas. La Vía Láctea crece atrayendo, desmembrando y absorbiendo estos sistemas galácticos más pequeños. Según se les arrancan sus estrellas, éstas van formando corrientes a lo largo del cielo que se pueden detectar con DECam. Pero incluso contando con un instrumento tan poderoso, estas corrientes estelares son extremadamente difíciles de encontrar, ya que están compuestas por un número relativamente pequeño de estrellas extendidas a lo largo de una gran área del cielo.

Antes de los nuevos descubrimientos de DES, ya se habían descubierto alrededor de dos docenas de corrientes estelares. Muchas de ellas las encontró el Sloan Digital Sky Survey, un precursor de DES. El estudio detallado de estas corrientes estelares se utilizará para medir la cantidad, la distribución y la agrupación de la materia oscura en la Vía Láctea, por lo que ayudará a entender sus propiedades fundamentales.

Puesto que no hay ninguna convención aceptada para nombrar las corrientes estelares, DES ha acudido a escuelas en Chile y Australia, pidiendo nombres a los alumnos. Tanto los alumnos como sus profesores han trabajado juntos para bautizar las corrientes utilizando palabras que tuviesen relación con el agua en los lenguajes de los nativos del norte de Chile y los aborígenes australianos. Más información acerca de estos nombres en la revista Symmetry (https://www.symmetrymagazine.org/article/rivers-in-the-sky).

Los artículos científicos que se han publicado utilizando los datos de los primeros años de DES pueden verse en https://www.darkenergysurvey.org/dr1-data-release-papers.

DES planea en el futuro otro lanzamiento público con más datos, una vez se complete el cartografiado, que incluirá aproximadamente el doble de imágenes de las que incluye el actual.El Dark Energy Survey es una colaboración de más de 400 científicos de 26 instituciones en siete países. Los fondos para los proyectos de DES han sido proporcionados por el U.S. Department of Energy Office of Science, U.S. National Science Foundation, el Ministerio de Economía, Industria y Competitividad de España, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, ETH Zurich for Switzerland, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Ministério da Ciência e Tecnologia, Deutsche Forschungsgemeinschaft, y las instituciones colaboradoras, cuya lista se encuentra en www.darkenergysurvey.org/collaboration.


Personas de contacto:                                 

ICE (IEEC-CSIC)

Dr. Enrique Gaztañaga, Profesor de Investigación del CSIC, gazta@ice.csic.es

IFAE   
Dr. Ramon Miquel, Director del IFAE y Profesor de Investigación ICREA, ramon.miquel@ifae.es

CIEMAT
Dr. Eusebio Sánchez, Investigador Científico del CIEMAT, eusebio.sanchez@ciemat.es

IFT-UAM/CSIC
Dr. Juan García-Bellido, Profesor de la UAM y miembro del IFT, juan.garciabellido@uam.es
28
Diciembre 2017

Nanda Rea wins the National Catalonian Award for Young Researchers 2017


National Catalonian Award for Young Researchers 2017 awarded to Nanda Rea from ICE (CSIC-IEEC)

The Govern de la Generalitat and La Fundació Catalana per a la Recerca i la Innovació (FCRi) awarded Nanda Rea from ICE (CSIC-IEEC) with the Els Premis Nacionals de Recerca Talent Jove 2017 for her professional trajectory and excellence in her research activity. The awarded will be handled in early 2018 by the President of the Govern de la Generalitat. This was featured on Decembre 27th, 2017 in the main Catalan news papers as La Vanguardia and El Periodico.
18
Diciembre 2017

El instrumento CARMENES descubre su primer exoplaneta


Científicos del CSIC han coliderado el hallazgo de HD 147379 b, con una masa algo superior a Neptuno, que orbita una estrella muy próxima
Científicos del CSIC han coliderado el hallazgo de HD 147379 b, con una masa ligeramente superior a Neptuno, que orbita una estrella muy próxima

A pesar de situarse en la denominada zona habitable, carece de superficie y no se espera que exista agua en forma líquida

El proyecto CARMENES, impulsado por un consorcio de 11 instituciones alemanas y españolas y coliderado por el Consejo Superior de Investigaciones Científicas (CSIC), ha descubierto su primer planeta fuera del Sistema Solar desde el telescopio de 3,5 metros del Observatorio de Calar Alto en Almería, dependiente del CSIC y la Sociedad Max Planck. Los detalles del hallazgo aparecen publicados en la revista Astronomy & Astrophysics Letters.

El instrumento ha observado una estrella enana muy próxima y la mitad de masiva que el Sol, en torno a la cual orbita un planeta bautizado como HD 147379 b, ligeramente más masivo que Neptuno. Este exoplaneta completa su órbita cada 86 días a una distancia que es solo una tercera parte de la que separa la Tierra del Sol. El planeta se encuentra dentro de la denominada zona de habitabilidad, que es la región en torno a una estrella donde las condiciones permiten la existencia de agua líquida. 

“Es improbable que la vida pueda haberse desarrollado en este planeta porque probablemente carece de superficie sólida”, explica Ignasi Ribas, investigador del CSIC en el Instituto de Ciencias del Espacio. Y agrega: “El exoplaneta, similar a Neptuno, que orbita en la zona habitable de una estrella muy próxima, no es de los más espectaculares, pero es el primero. Tenemos por delante un futuro de observaciones que, sin duda, darán sus frutos”.

Un instrumento único
El descubrimiento confirma la eficiencia de CARMENES como instrumento diseñado para buscar planetas de tipo terrestre en la zona de habitabilidad. "Los falsos positivos son habituales en la búsqueda de planetas extrasolares, y aquí emerge una de las fortalezas de CARMENES: al observar en el visible y en el infrarrojo podremos confirmar los hallazgos sin necesidad de otras comprobaciones. Ningún otro instrumento puede hacer esto", señala Pedro J. Amado, investigador del CSIC en el Instituto de Astrofísica de Andalucía y co-investigador principal de CARMENES.

El instrumento ha sido desarrollado por un consorcio de 11 instituciones españolas y alemanas. En España participan en el proyecto, que se prolongará al menos hasta el año 2020, el Instituto de Astrofísica de Andalucía (CSIC), que colidera el proyecto y ha desarrollado el canal infrarrojo, el Instituto de Ciencias del Espacio (CSIC-IEEC), la Universidad Complutense de Madrid, el Instituto de Astrofísica de Canarias y el Centro de Astrobiología (CSIC-INTA). Ha obtenido financiación de la Sociedad Max-Planck, el CSIC, el Ministerio de Economía y Competitividad y la Junta de Andalucía, entre otros organismos. 

A. Reiners et al. The CARMENES search for exoplanets around M dwarfs. HD147379 b: A nearby Neptune in an early-M dwarf’s temperate zone. Astronomy & Astrophysics Letters. DOI: 10.1051/0004-6361/201732165

 
01
Diciembre 2017

Fifty years of pulsar astrophysics


Fifty years of pulsar astrophysics: an invited report, a new image and a video, produced for Nature Astronomy
In November 1967, after about two years mounting thousands of antennas, and connecting about a hundred miles of wires and cables over about four acres, the Cambridge PhD student Jocelyn Bell, noticed a strange signal in the data of her recently mounted telescope at the Mullard Radio Astronomy Observatory. Scanning a large part of the sky taking advantage of the Earth rotation, this new radio telescope soon produced a huge amount of data that Jocelyn Bell was promptly analyzing by hand, to study radio scintillation from many different astronomical sources.  However, very soon she came across a “scruff” signal, that she recognized as repeating every 1.33 seconds. These fast repetitions could not come from anything she was used to observe.
 
After a hectic time during Christmas holidays investigating over the nature of this “scruff” signal, carefully excluding any kind of man-made interference in the data, or the more exotic possibility of a “Little Green Man” trying to communicate with humans, Jocelyn Bell (now Professor) and her PhD supervisor Prof. Antony Hewish, recognized in this fast and periodic signal the possibility of it being produced by a compact star, dense and rapidly rotating star.
 
In fact, in the early  ‘30s, soon after the discovery of neutrons, many scientists predicted the existence of very compact and dense stars, made in large fraction by neutrons (spanning about 20km and as dense as atomic nuclei). These neutron stars were indeed predicted to be fast rotating, highly magnetic, and produced as left-overs of the death-end explosion of massive stars. In February 1968, the first pulsar discovery was published in the Nature magazine by Mrs. Bell, Prof. Hewish and collaborators.
 
Fifty years after this revolutionary discovery, Nature Astronomy publish a complete Issue celebrating the 50 years of pulsars, comprising several invited reports on different topics concerning pulsars. Nanda Rea from the Institute of the Space Sciences (IEEC-CSIC) has written a report for this issue, and Santiago Serrano Elorduy (IEEC-CSIC) has produced a new image and a video for Nature Astronomy showing the about 2500 pulsars discovered to date, as a function of time.
15
Noviembre 2017

Prof.S.D. Odintsov is 2017 Thomson-Reuters highly cited researcher (fourth year in a row)


https://clarivate.com/hcr/2017-researchers-list/#
Prof. S.D. Odintsov is 2017 Thomson-Reuters highly cited researcher (fourth year in a row) https://clarivate.com/hcr/2017-researchers-list/#
18
Octubre 2017

Una nueva ventana al conocimiento del universo


A new window to the knowledge of the Universe
El 17 de agosto, la colaboración LIGO/VIRGO captó de forma simultánea mediante tres detectores separados por miles de kilómetros sobre la Tierra una fuerte señal de ondas gravitacionales cuyo origen fue la colisión de dos estrellas de neutrones. Nunca antes se había detectado una señal igual. Prácticamente al mismo tiempo, el Fermi Gamma-ray Space Telescope de la NASA,  observó una explosión de rayos gamma en la misma región del cielo.  Horas después, otro equipo científico alertado por las detecciones iniciales, usó la cámara de DES (Dark Energy Survey) para obtener las primeras imágenes ópticas de una gran explosión cósmica (kilonova) proveniente de la misma fuente, la galaxia NGC 4993, situada a 130 millones de años luz de la Tierra. 
 
Investigadores del Instituto de Ciencias del Espacio (IEEC-CSIC) participan en las colaboraciones DES y Fermi que han hecho posible estos descubrimientos. Decenas de observatorios y miles de astrofísicos se han coordinado para recolectar datos de este evento.  La variedad y calidad de los datos que se han recogido sobre esta explosión cósmica y las perspectivas futuras, han generado un gran optimismo sobre esta nueva ventana observacional.
 
Los datos confirman los modelos sobre el origen de elementos pesados, como el oro, el platino o el uranio, presentes en la Tierra y en otros sistemas.
Todos estos datos permiten, entre otras cosas, medir el ritmo de expansión del universo o entender nuevos detalles sobre la evolución estelar y galáctica.
 
Por primera vez, los grupos del Instituto de Ciencias del Espacio (IEEC-CSIC) que trabajan en áreas tan diversas como la detección de ondas gravitaciones, física fundamental, radioastronomía, astronomía milimétrica, cosmología, física estelar, astrofísica de altas energías y de rayos X, formación de galaxias o búsqueda de planetas tienen un objeto común que investigar.
 
16
Octubre 2017

Científicos detectan la contrapartida óptica de las últimas ondas gravitacionales de LIGO/Virgo


Scientists spot explosive counterpart of LIGO/Virgo’s latest gravitational waves
Un equipo científico, usando la cámara de DES, ha capturado imágenes del resultado de la colisión de dos estrellas de neutrones, la fuente de la más reciente detección de ondas gravitacionales hecha por LIGO/Virgo. Investigadores del Centro de Investigaciones Energéticas, MedioAmbientales y Tecnológicas (CIEMAT), el Institut de Ciències de l'Espai (IEEC-CSIC), el Institut de Física d'Altes Energies (IFAE) y el Instituto de Física Teórica (UAM-CSIC) participan en el resultado.
 
Barcelona/Madrid, 16 de octubre de 2017
 
Un equipo de científicos, utilizando la Dark Energy Camera (DECam), la herramienta principal de observación del Dark Energy Survey (DES), ha registrado una de las primeras imágenes ópticas de la colisión de dos estrellas de neutrones, descubierta por las colaboraciones LIGO y Virgo mediante la observación de ondas gravitacionales. Es la primera vez que se detecta una colisión bien confirmada entre dos estrellas de neutrones y es también la primera vez que se detecta una fuente cósmica simultáneamente en ondas gravitacionales y electromagnéticas.
Los científicos de DES unieron fuerzas con un equipo de astrónomos con sede en el Centro Smithsoniano de Astrofísica (CfA) de Harvard, y juntos han trabajado utilizando varios observatorios de todo el mundo, para confirmar sus datos originales. Las imágenes tomadas con DECam capturaron el destello de una kilonova -una explosión similar a una supernova, pero en menor escala- que ocurre cuando dos estrellas colapsadas (llamadas estrellas de neutrones) chocan entre sí, creando elementos radiactivos pesados.
 
Esta fusión, particularmente violenta, que ocurrió hace 130 millones de años en una galaxia cercana a la nuestra (NGC 4993), es la fuente de las ondas gravitacionales detectadas por las colaboraciones Laser Interferometer Gravitational-Wave Observatory (LIGO) y Virgo el 17 de agosto. Esta es la quinta fuente de ondas gravitacionales que se detecta. La primera se descubrió en septiembre de 2015, por lo cual los tres miembros fundadores de la colaboración LIGO fueron galardonados con el Premio Nobel de Física hace dos semanas.
 
Este último evento supone la primera detección de ondas gravitacionales causadas por la colisión de dos estrellas de neutrones y, en consecuencia, la primera que tiene una fuente visible. Las detecciones previas se debían a la colisión de dos agujeros negros, que no pueden ser observados con telescopios. Esta colisión de estrellas de neutrones se produjo relativamente cerca de la Tierra, por lo que en el plazo de unas pocas horas tras recibir la noticia de LIGO/Virgo, los científicos fueron capaces de apuntar sus telescopios en la dirección del evento y conseguir una imagen clara de la luz emitida en la colisión.
 
Uno de los más importantes registros de esta kilonova se obtuvo con DECam, el instrumento principal del proyecto DES. Este es uno de los dispositivos de toma de imágenes digitales más potentes que existen. Se construyó y probó en Fermilab, y está montada en el telescopio Blanco, de 4 metros, perteneciente a la National Science Foundation, y situado en el observatorio de Cerro Tololo, en Chile. Las imágenes de DES se procesan en el National Center for Supercomputing Applications de la Universidad de Illinois, en Urbana-Champaign. La colaboración DES cuenta con una importante participación de científicos e ingenieros españoles, que tienen responsabilidades en todos los aspectos, desde la ciencia al mantenimiento de los instrumentos de medida.
 
Los científicos de LIGO/Virgo trabajan con docenas de colaboraciones astronómicas de todo el mundo, entre las cuales se cuenta DES, y que tienen el papel de proporcionar imágenes de las zonas del cielo donde se originan las ondas gravitacionales detectadas. El equipo de DES y CfA se ha estado preparando para un evento como este durante más de dos años, forjando conexiones con otras colaboraciones astronómicas y poniendo en marcha un protocolo para movilizarse rápido cada vez que se detecta una nueva fuente. De esta forma, a las pocas horas de recibir la información acerca de la localización en el cielo, el equipo había reservado tiempo en varios observatorios, incluyendo el telescopio espacial Hubble de la NASA y el observatorio espacial de rayos-X  Chandra. El resultado es un conjunto de datos muy rico que cubre toda el espectro electromagnético, desde las ondas de radio hasta los rayos X.
 
Para añadir aún más emoción a la observación, esta última detección de ondas gravitacionales se correlaciona con una explosión de rayos gamma detectada por el telescopio espacial Fermi de la NASA y más tarde en rayos X por el telescopio Integral de la ESA. La combinación de todas estas detecciones es como ver un rayo y escuchar el trueno correspondiente por primera vez, y abre un mundo de nuevos descubrimientos científicos.
 
Este evento también proporciona una manera única y completamente nueva de medir el ritmo de expansión del universo, la constante de Hubble. Igual que los astrofísicos utilizan supernovas como candelas estándar (objetos con un brillo intrínseco conocido) para medir la expansión cósmica, las kilonovas se pueden utilizar como sirenas estándar (objetos cuya intensidad en ondas gravitacionales es conocida). Los científicos de LIGO/Virgo pueden utilizar este hecho para medir la distancia a dichos eventos, mientras que del seguimiento en óptico con DES y otros telescopios se obtiene el desplazamiento al rojo o la velocidad de recesión. La combinación de ambas medidas permite a los científicos determinar el ritmo de expansión actual. Este nuevo tipo de medida es complementaria a otras que hace DES en su misión de avanzar en la comprensión de la energía oscura, la misteriosa sustancia responsable de la aceleración actual en la expansión del universo.
 
Según Juan García-Bellido, uno de los responsables del análisis de la kilonova en DES, “el grupo de ondas gravitacionales del cartografiado DES lleva trabajando desde hace al menos dos años para el seguimiento óptico de un evento como este. Horas después de la colisión de las dos estrellas de neutrones, DECam descubrió de forma independiente la fuente en el visible e infrarrojo cercano en la galaxia NGC4993, de la que conocemos muy bien su posición en el cielo y su desplazamiento al rojo, lo que ha permitido, entre otras cosas, determinar el ritmo de expansión del universo. Es emocionante ver en directo cómo se coordinan 70 experimentos distintos para poder hacer una medida precisa de uno de los eventos más violentos del universo, una kilonova o short gamma-ray burst.”
 
DES comenzó recientemente el quinto y último año de su misión para cartografiar un área muy amplia del cielo austral con un detalle sin precedentes. Los científicos de DES utilizarán estos datos para aprender más sobre el efecto de la energía oscura a lo largo de los últimos ocho mil millones de años de historia del universo, y en este proceso medirán 300 millones de galaxias, 100.000 cúmulos de galaxias y 3000 supernovas.
 
El grupo DES-Spain, formado por CIEMAT, IEEC/CSIC, IFAE y UAM/IFT, ha contribuido a construir DECam, la cámara con la que se han hecho estas observaciones. En particular diseñó, construyó y validó  la electrónica, y ha puesto en marcha el sistema de guiado, entre otras contribuciones. También ha dado soporte al programa de seguimiento óptico de las ondas gravitacionales, participa en el análisis científico y en las publicaciones asociadas a este descubrimiento y es uno de los socios fundadores de la colaboración DES, con financiación del MINECO, IEEC, CSIC y Generalitat de Cataluña.
El Dark Energy Survey es una colaboración de más de 400 científicos de 26 instituciones en siete países. Los fondos para los proyectos de DES han sido proporcionados por el U.S. Department of Energy Office of Science, U.S. National Science Foundation, Ministry of Economy, Industry and Competitiveness of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, ETH Zurich for Switzerland, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Ministério da Ciência e Tecnologia, Deutsche Forschungsgemeinschaft, y las instituciones colaboradoras, cuya lista se encuentra en  www.darkenergysurvey.org/collaboration. 
 
Personas de contacto:                         
ICE (IEEC-CSIC)   
Dr. Enrique Gaztañaga, Profesor de Investigación del  CSIC, gazta@ice.csic.es
IFAE   
Dr. Ramon Miquel, Director del IFAE y Profesor de Investigación ICREA, ramon.miquel@ifae.es
CIEMAT
Dr. Eusebio Sánchez, Investigador Científico del  CIEMAT, eusebio.sanchez@ciemat.es
IFT-UAM/CSIC
Dr. Juan García-Bellido, Profesor de la UAM y miembro del IFT, juan.garciabellido@uam.es
03
Octubre 2017

A paper signed by A. Serenelli is considered a highlight paper for 2017 by Astronomy & Astrophysics


A paper signed by A. Serenelli is considered a highlight paper for 2017 by Astronomy & Astrophysics
The paper titled "The brightness of the red giant branch tip. Theoretical framework, a set of reference models, and predicted observables" signed by A. Serenelli and four other authors, published by Astronomy & Astrophysics (A&A 606, A33), it is considered a Highlighted paper for 2017 by the publication.
27
Septiembre 2017

Josep Maria Trigo miembro de la Selección Española de Ciencia 2017


Josep Maria Trigo ha sido seleccionado como miembro de la Selección Española de Ciencia 2017 por la revista QUO
La revista de divulgación QUO, con la colaboración del CSIC y la secretaría de Estado de Innovación a seleccionado a nueve investigadores españoles como miembros de la Selección Española de Ciencia para 2017. Esta selección científica está formada por: Lluís Torner, Concha Monje, Ramón López de Mántaras, María Carmen Collado, Javier Tamayo, Antonio Figueras, Alejandro Ocampo y los astrofísicos Guillem Anglada-Escudé y Josep Maria Trigo, miembro este último del Instituto de Ciencias del Espacio. La entrega de los galardones se realizará a principios de octubre en la sede central del CSIC en Madrid.
27
Septiembre 2017

Exploración del Universo a las más Altas Energías – el Cherenkov Telescope Array (CTA) Publica su Nuevo Libro de Ciencia


Libro de Ciencia de CTA
La última versión del caso científico del Cherenkov Telescope Array (CTA), Science with the Cherenkov Telescope Array, se publicó ayer a través de la biblioteca del servidor web del CTA (www.cta-observatory.org/science/library/) y arXiv (1709.07997) y se publicará en una edición especial de la International Journal of Modern Physics D en las próximas semanas. El trabajo incluye más de 200 páginas que introducen y desarrollan los principales casos científicos del CTA y  posicionan al CTA en el contexto del resto de grandes observatorios presentes y futuros.
 
"La publicación de este documento, donde se detalla la amplitud y riqueza de la ciencia que se desarrollará con el observatorio durante la próxima década, representa un hito importante para CTA.", señala uno de los editores de este trabajo, del Instituto de Ciencias del Espacio (IEEC-CSIC), Diego Torres "El documento no habría sido posible sin el trabajo de cientos de miembros del Consorcio durante los últimos años".
 
CTA será el principal observatorio astronómico de rayos gamma de muy alta energía durante las próximas décadas. El potencial científico del CTA es extremadamente amplio y abarca desde la comprensión del papel de las partículas cósmicas relativistas hasta la búsqueda de la materia oscura. CTA explorará el universo extremo, estudiará desde el entorno más cercano de agujeros negros hasta las regiones de baja densidad del universo a gran escala. Con una capacidad sin precedentes para observar un enorme rango de energía de fotones desde 20 gigaelectronvoltios (GeV) hasta 300 teraelectronvoltios (TeV), el CTA mejorará en todos los aspectos las capacidades de cualquiera de los instrumentos actuales. Su enorme campo de visión y sensibilidad le permitirán trabajar cientos de veces más rápido que los observatorios de rayos gamma en energías de TeV anteriores.
 
"Los principales proyectos científicos descritos en el documento - sondeos y observaciones profundas de objetos clave - proporcionarán conjuntos de datos de gran valor para generaciones de astrofísicos y supondrán una ayuda muy importante para la planificación de observaciones del CTA por parte de usuarios particulares", comenta Werner Hofmann, portavoz de CTA.
 
[Text Box: Arriba: Mapa del cielo simulado tal y como lo vería CTA a través del su programa de sondeo del plano Galáctico. (Descargar imagen)] Algunos de los descubrimientos previstos más prometedores del CTA son el estudio de nuestra propia Galaxia (la Vía Láctea), que se espera que proporcione datos de un número considerablemente superior de fuentes galácticas que las conocidas hasta la fecha para mejorar los estudios actuales de poblaciones y así avanzar en nuestro entendimiento del origen de los rayos cósmicos (Capítulo 6); la investigadora Ramon y Cajal del Instituto de Ciencias del Espacio, Emma de Oña Wilhelmi, uno de los principales autores del capítulo que describe la búsqueda de aceleradores de rayos cósmicos explica: “con CTA podremos estudiar nuestra Galaxia con una sensibilidad 10 veces mejor que con los instrumentos actuales, lo cual permitirá estudiar también el fondo Galactico rayos cósmicos y descubrir su origen ¡después de 100 años!”;   la búsqueda de la materia oscura, difícil de vislumbrar con la instrumentación actual (Capítulo 4); la detección y estudio de fenómenos astronómicos explosivos y cataclísmicos como los que  producen las explosiones de rayos gamma o las ondas gravitatorias (Capítulo 9).

"Para mí, el aspecto más emocionante del CTA es el potencial que tiene en cuanto a descubrimientos verdaderamente inesperados", apunta el Científico del proyecto, Prof. Jim Hinton. "CTA estudiará a escalas temporales más cortas en astronomía de rayos gamma de muy alta energía, energías más altas y objetos más lejanos. Llevar las fronteras de la astronomía más allá siempre lleva a descubrimientos realmente nuevos y emocionantes, por lo que estamos deseando empezar a observar".
 
Hace ya una década desde que comenzó la planificación científica del CTA, dando lugar a una serie de publicaciones en una edición especial de Astroparticle Physics en 2013. El nuevo trabajo que se presenta ahora comenzó ese mismo año con un esfuerzo organizado por el consorcio de CTA para desarrollar los proyectos de ciencia prioritaria  de CTA (o KSPs por su acrónimo en inglés) en 2013. Después de tres años de desarrollo y perfeccionamiento, los cuales incluyeron concienzudas revisiones internas y externas, los KSPs fueron incorporados al documento que se presenta hoy: Science with the Cherenkov Telescope Array.
 
Notas para editores:
CTA (www.cta-observatory.org) es una iniciativa global para construir el mayor y más potente observatorio de rayos gamma del mundo con más de 100 telescopios situados en el hemisferio norte (en el observatorio astronómico del Roque de los Muchachos, en la isla de La Palma, España) y el hemisferio sur (cerca del actual Observatorio Europeo Austral en Paranal, Chile). Más de 1.400 científicos e ingenieros de 32 países están involucrados en el desarrollo científico y técnico del CTA. La planificación de la construcción del Observatorio la lleva a cabo la CTAO gGmbH, regida por Accionistas y Miembros Asociados de un número de países en aumento.
CTA servirá como observatorio abierto a la comunidad mundial de física y astrofísica. El Observatorio CTA detectará radiación de alta energía con una precisión sin precedentes y sensibilidad aproximadamente diez veces superior a la de los instrumentos actuales, proporcionando nuevos conocimientos sobre los eventos más extremos del universo.
CTA está incluido en la hoja de ruta de 2008 del Foro Estratégico Europeo sobre Infraestructuras de Investigación (ESFRI). Este proyecto recibe financiación de los programas de investigación e innovación Horizon 2020 de la Unión Europea bajo el Acuerdo nº 676134. Este proyecto ha recibido financiación del Séptimo Programa Marco de la Unión Europea (FP7 / 2007-2013) [FP7 / 2007-2011] Acuerdo nº 262053.
 
 
Contactos del Documento:
Prof. Rene Ong, Co-Portavoz de CTA
+1-3108253622; rene@astro.ucla.edu
 
Prof. Jim Hinton, Científico del Proyecto CTA
+49-6221-1516201; jim.hinton@mpi-hd.mpg.de
 
Prof. Diego Torres
+34-93937379788; dtorres@ice.csic.es
 
Contactos Generales de CTA:
 
Prof. Werner Hofmann, Portavoz de CTA
+49-6221-516330; werner.hofmann@mpi-hd.mpg.de

Prof. Ulrich Straumann, Director General de CTAO gGmbH
+49-6221-516471; strauman@physik.uzh.ch
 
Megan Grunewald, Responsible de Unidad de Divulgación de CTA
+49-6221-516471; mgrunewald@cta-observatory.org
 
 
###
Institute of Space Sciences (IEEC-CSIC)

Campus UAB, Carrer de Can Magrans, s/n
08193 Barcelona.
Phone: +34 93 737 9788
Email: ice@ice.csic.es
Website developed with RhinOS

Síguenos


An institute of the Consejo Superior de Investigaciones Científicas

An institute of the Consejo Superior de Investigaciones Científicas
Affiliated with the Institut d'Estudis Espacials de Catalunya

Affiliated with the Institut d'Estudis Espacials de Catalunya