Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Fiber reciprocity

- Desirable to exchange light between two optical benches
- Benches move → fiber
- Fiber introduces reciprocal phase noise, but can be subtracted
- Nonreciprocal phase noise cannot be subtracted
- Possible sources
 - Travel time effects
 - Light in wrong fiber axis
 - Reflections at fiber ends
 - …?
Tests of the reciprocity

- Two possibilities:
 - Sagnac
 - LISA-like

- First experiments using sagnac setup
 - Phasenoise above LISA requirements
 - Reduction not possible

→ LISA-like setup
Initial Sagnac results

- Noise Level of about
 \[3 \cdot 10^{-3} \text{ rad/Hz}^{1/2}\]
 observed

- External influences investigated:
 - Fiber temperature
 - Electronic noise
 - Polarization inside fiber
 - Reciprocity
 - Coherence length
 - Backscatter
 - Temperature of EOM

![Graph showing phase noise vs. frequency](image)
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

LISA-like setup

- Sagnac does not show required performance
- Switch to setup closer to actual LISA application
LISA like setup

- Improvements:
 - LISA Pathfinder laser system
 - Vacuum
 - Matched path lengths
 - New photodiode amplifiers
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Comparison of spectra

![Graph showing comparison of spectra with labels: first measurement and improved setup.](image)

- **Frequency [Hz]**
 - 10^{-4}
 - 10^{-2}
 - 10^{0}
 - 10^{2}

- **Phase noise [rad/√Hz]**
 - 10^{3}
 - 10^{2}
 - 10^{1}
 - 10^{0}

Legend:
- Red: first measurement
- Blue: improved setup

Diagram Elements:
- Laser 1
- Laser 2
- Fiber under test
- PLL
- S/W PM
- Component library

Notes:
- 200 MHz
- 1.6 kHz

LISA Group AEI Hannover, Germany
http://www.lisa.aei-hannover.de/
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Pathlength noise

- Setup sensitive to changes in pathlength
- Simple IFO for comparison
 - Heterodyne Mach-Zehnder
 - 10 cm Arm length
- Measure pathlength noise
- Add.: Measurement w/o fiber

Zerodur Mach-Zehnder
Pathlength noise

Comparison of pathlength noise

- Fiber
- Aluminium breadboard
- Zerodur breadboard

Pathlength noise (rad/Hz)

Frequency (Hz)

Pathlength noise $[\text{m}/\text{Hz}]$

10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11}
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Measurements without fiber

![Graph showing measurement without fiber](image)

- Red line: Fiber
- Blue line: Air

 Roland Fleddermann, June 18, 2008
Zerodur Interferometer

- Aluminum limits pathlength noise

⇒ Zerodur
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

First results with Zerodur Interferometer

Still way above requirements, even worse than Sagnac results
Improvements

- Straylight correction
 - Pi measurements high noise level
 - Straylight must enter measurement
Effect of straylight correction

Fiber nonreciprocity measurements with/without correction

- Fiber w/o cor
- Fiber w/ cor
- null meas w/o (cor)
- null meas w/ (cor)
- π_{ref} (MZ, new PDs)
- 1pm goal

Graph showing phase noise and pathlength noise against frequency.
Polarization control

- Polarization must match fiber axis
 - Different indices of refraction act like waveplate
 - Output polarization state will generally be elliptic and time dependent
- Introduce polarizers into zerodur setup
 - Alignment is difficult
 - Polarimeter needed

![Graph comparing phase noise with and without polarizers](image.png)
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Null measurement

- Measurement without fiber
- Foreseen in design of Zerodur IFO
- Shows noise of setup

![Graph showing comparison between null measurement and fiber measurement with polarization](image)
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Summary

Overview over measurements

Phase noise [rad/√Hz]

Frequency [Hz]

Pathlength noise [m/√Hz]
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Summary

Overview over measurements

- without corr
- best sagnac
- with straylight corr
- null
- requirement: 1 pm

Graph showing phase noise and path length noise as a function of frequency.
Measurement of the nonreciprocal phase noise of a single mode polarization maintaining optical fiber

Summary

Overview over measurements:
- without corr
- best sagnac
- with straylight corr
- fiber length stab
- polarizers (no fiber stab)
- null
- requirement: 1 pm
Conclusions/Outlook

- Requirements not (yet) fulfilled
 - Made good progress
 - Nonreciprocity observed still limited by setup
 - Backreflection identified as noise source

- Possible ways of improvement
 - Less backreflection (couplers, lenses, fibers, alignment)
 - Better polarization alignment/control

- Next steps
 - Investigate backreflection
 - Try other fiber couplers (LPF Fiber injector prototypes?)
 - Improve polarization alignment (Polarimeter)
 - Other fibers
 - Fiber temperature/length stabilization
Thank you for your attention